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Spatial scale modulates stochastic 
and deterministic influence on biogeography 
of photosynthetic biofilms in Southeast Asian 
hot springs
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Abstract 

Hot springs, with their well‑characterized major abiotic variables and island‑like habitats, are ideal systems for study‑
ing microbial biogeography. Photosynthetic biofilms are a major biological feature of hot springs but despite this 
large‑scale studies are scarce, leaving critical questions about the drivers of spatial turnover unanswered. Here, we 
analysed 395 photosynthetic biofilms from neutral‑alkaline hot springs (39–66 °C, pH 6.4–9.0) across a 2100 km 
latitudinal gradient in Southeast Asia. The Cyanobacteria‑dominated communities were categorized into six biogeo‑
graphic regions, each characterized by a distinct core microbiome and biotic interactions. We observed a significant 
decline in the explanatory power of major abiotic variables with increasing spatial scale, from 62.6% locally, 55% 
regionally, to 26.8% for the inter‑regional meta‑community. Statistical null models revealed that deterministic envi‑
ronmental filtering predominated at local and regional scales, whereas stochastic ecological drift was more influential 
at the inter‑regional scale. These findings enhance our understanding of the differential contribution of ecological 
drivers and highlight the importance of spatial scale in shaping biogeographic distributions for microorganisms.
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Background
The biogeography of microorganisms describes their 
demographic patterns of distribution across spatial and 
temporal scales. Resolving such patterns and their under-
lying cause is important to understanding microbial 
contribution to ecosystem functionality and resilience 
[1, 2]. Ecological theory identifies that biogeographic 
patterns emerge as the result of stochastic and deter-
ministic influences. Neutral theories predict a tendency 
towards random patterns in species co-occurrence and 
environmentally independent spatial autocorrelation [3], 
whilst deterministic processes due to niche partitioning 
(i.e. environmental variables) and species interactions 
lead to segregation in species co-occurrence [4]. Large-
scale biogeographic patterns have been demonstrated for 
microbial distribution in terrestrial [5, 6] and marine [7, 
8] microbial ecosystems, although resolving evidence for 
the underlying drivers can be challenging in part due to 
the complexity of these systems [9]. Extreme microbial 
habitats such as hot springs offer the potential to inter-
rogate hypotheses in biogeography within relatively 
well-constrained natural systems. This is because they 
occur as spatially discrete island-like habitats with read-
ily defined major abiotic variables, and communities 
develop with reduced trophic complexity relative to other 
soil and aquatic habitats.

Hot springs can support distinct planktonic, sedi-
ment, and biofilm communities [10], thus making them 
versatile for addressing different questions in microbial 
ecology. Multiple studies of hot spring sediment and 
planktonic habitats have shown that local community 
assembly is strongly correlated with abiotic stressors 
such as temperature and pH [11–16], suggesting that 
deterministic processes are dominant at local scales. At 
landscape scales the relative influence of abiotic vari-
ables appears to decline [17], and potential endemism for 
some taxa may occur at an inter-continental scale [18]. 
An important hot spring microbial niche is occupied by 
photosynthetic biofilms that comprise the dominant bio-
mass in neutral-alkaline springs at temperatures from 
the onset of thermophily at 40–45 °C to the upper lim-
its for photosynthesis at 73 °C [19]. The neutral-alkaline 
hot springs are widely distributed globally in tectonic 
landscapes [20, 21]. These photosynthetic communities 
provide a contrast to hot spring communities at higher 
temperatures and acidic springs that can be dominated 
by chemoautotrophic hydrogen-oxidizing communities 
[22]. Previous studies of hot spring photosynthetic bio-
films have demonstrated that the dominant photosyn-
thetic Cyanobacteria [23–26] and Chloroflexota [27–29] 
taxa display patterns of occurrence linked to temperature 
at local scales from ambient temperatures up to the ther-
mal limit for photosynthesis at approximately 73 °C [19]. 

The observation of distinct phylotypes for certain photo-
synthetic groups including Cyanobacteria [23, 30, 31] and 
Chloroflexota [24, 32] from different distant hot spring 
locations has led to the proposal that this reflects allopat-
ric speciation due to geographic isolation. The extent to 
which such patterns hold for communities across con-
tinuous broad environmental and spatial gradients to 
create clearly defined biogeographic regionalization, and 
the identification of ecological drivers that underly such 
patterns remain largely unresolved. Prompted by recent 
studies of planktonic hot spring microbiota where quan-
titative estimates have revealed that diverse abiotic vari-
ables are only able to explain a small fraction of observed 
microbial distribution at both local [13] and landscape 
[17] scales; this motivated us to examine the potential 
contribution of multiple stochastic and deterministic 
influences on biofilm community assembly.

We hypothesized that an approach which encom-
passed a large continuous regional geographic scale with 
concurrent estimation of the influence from abiotic and 
biotic, stochastic and deterministic drivers would yield 
valuable novel insight on the ecological drivers of bio-
geography for photosynthetic biofilms at different spa-
tial scales in hot springs. The hot springs of Southeast 
Asia support abundant neutral-alkaline hot springs and 
this region is also under-represented in the global data-
set for hot spring microbiota, and so we rationalized that 
our focus would also substantially enhance the utility of 
hot springs for future global-scale comparisons. Here 
we report the interactions that explain microbial bioge-
ography of photosynthetic biofilms in 395 hot springs 
from Southeast Asia. Hot springs in this region support 
prolific photosynthetic biofilms as their major biotic 
component [33–35], they are culturally important and 
have economic value, and yet their diversity and bioge-
ography has not been systematically studied. We resolved 
the phylogenetic structure and biogeography of commu-
nities using 16S rRNA gene sequencing, with additional 
shotgun metagenomics to validate our diversity estima-
tion approach. We then identified the interaction of 
biotic, geographic, and major geochemical factors on the 
observed patterns and applied statistical null models to 
quantify the relative influence of selection, dispersal limi-
tation, and genetic drift in shaping community structure 
at different spatial scales. The insight generated will be 
essential for future development and testing of hypoth-
eses that further address large scale spatial distributions 
of microorganisms in hot springs and other systems.

Materials and methods
Sample collection and environmental metadata
Detailed sampling protocols are described in the Sup-
plementary Methods. Briefly, photosynthetic microbial 
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biofilms (N = 395) were sampled aseptically into 500 µl 
DNA/RNA-later preservative solution at 40 thermally 
defined hot spring sites from 15 geothermal locations in 
Southeast Asia along a ~ 2,100 km north–south transect 
in Southeast Asia during March-October 2022. Abiotic 
variables (temperature, pH, conductivity, nitrate, nitrite, 
phosphate, hydrogen sulfide) were measured on-site for 
each location using hand-held probes and colorimetric 
test kits, or visual observation (pools v flowing water, 
human usage of hot springs) (Supplementary Table S1).

DNA sequencing
Detailed sequencing and quality control protocols are 
described in the Supplementary Methods. Briefly, DNA 
extraction from biofilm samples was carried out using the 
Powerlyzer Powersoil Kit (Qiagen) optimized for pho-
tosynthetic biofilms [35]. Taxonomic diversity was esti-
mated by 16S rRNA gene amplicon sequencing of the V4 
region (Illumina Novaseq 6000, PE250 kits), using uni-
versal primers 515 F (GTG CCA GCMGCC GCG GTAA) 
and 806R (GGA CTA CHVGGG TWT CTAAT) [36] and 
the Earth Microbiome Project PCR workflow [37], with 
appropriate negative controls and sample randomization. 
To better understand and quantify any potential bias in 
our dataset due to primer selection we also performed 
shotgun metagenomic sequencing (Illumina Novaseq 
6000, PE150 kits) for a subset of samples (N = 12) which 
avoided the biases of a PCR-based approach.

Bioinformatic analysis
Detailed bioinformatic protocols are described in 
the Supplementary Methods. Briefly, 16S rRNA gene 
sequences were processed in R (version 4.2.2) [38] using 
‘DADA2’ [39] before taxonomic assignment of amplicon 
sequence variants (ASVs) using the SILVA 16S database 
[40, 41] (v138.1) with the RDP naive Bayesian classifier. 
The data was rarified to the minimum sequencing depth 
(63 k reads per sample) and further filtered to contain 
ASVs with > 1% relative abundance. For metagenomes, 
‘Trimmomatic’ v0.39 [42] was employed to eliminate 
adapters from raw sequencing data and remove low 
quality reads that were shorter than 50 bp. Processed 
reads were subjected to taxonomic assignment using the 
Kraken2 software suite with NCBI nt database (v2023-
11–29) [43] and the default parameters. Comparison of 
metagenomic and 16S rRNA taxonomic classifications 
were performed using SingleM (v0.18.2) (Github: https:// 
github. com/ wwood/ singl em).

Statistical analysis
Detailed statistical analysis protocols are described in the 
Supplementary Methods. All analyses were performed 
using R (v4.2.2) [38]. Briefly, alpha diversity indices were 

estimated using ‘vegan’ [44]. Distance decay was cal-
culated using ‘phyloseq’ [45] from unweighted UniFrac 
phylogenetic distances versus pairwise geographical dis-
tances in kilometres calculated using ‘geodist’ [46]. Beta 
diversity ordinations were determined using Principal 
Coordinate Analysis (PCoA) of unweighted UniFRAC 
distances (without transformation) using ‘phyloseq’ 
[45]. Heat trees and differential heat trees displaying 
both quantitative (ASV numbers, read abundances and 
median proportion of reads) and hierarchal taxonomic 
classifications were generated using ‘metacoder’ [47]. 
Classification of ASVs into ecological guilds was achieved 
using FAPROTAX [48], with additional manual curation 
from searches using NCBI databases and the scientific 
literature. Correlations (Pearson’s [r]) between ASV pre-
dicted function and abiotic variables was achieved using 
the ‘plot_cor’ function in the ‘microeco’ package [49]. 
Core microbiomes (> 1% relative abundance and ≥ 95% 
prevalence) were determined using ‘microbiome’ [50]. 
Screening of human-associated taxa was achieved by 
identifying ASVs associated with twenty indicator gen-
era [51]. Co-occurrence network analysis was performed 
using ‘Spiec-Easi’ with the’mb’(Meinshausen-buhlmann’s 
neighborhood selection) method using ‘netcomi’ [52]. 
Modules were defined with the ‘cluster_walktrap’ method 
using ‘microeco’ [49]. The importance and classification 
of nodes within and amongst modules in the network 
was determined by estimating Pi and Zi scores using the 
‘plot_taxa_roles’ function. Mantel’s test was performed 
using Pearson’s correlation coefficient and default 999 
permutations with ‘microeco’ [49]. Variance partition-
ing was performed using ‘vegan’ [44]. Random forest 
machine learning algorithms [53] were used to fit ensem-
ble models to the association between biotic and abiotic 
data with ‘rfpermute’ v2.5.2 [54] using default settings. 
Statistical null models [55] were generated using ‘micro-
eco’ [49]. The beta nearest taxon index (betaNTI) was 
calculated to infer contribution to ecological convergence 
or divergence using the ‘frequency’ model. Significance 
testing was performed using ‘vegan’ [44] for: Analysis of 
Variance (ANOVA), permutational Multivariate Analysis 
of Variance (PERMANOVA), permutation-based tests 
of betadispersion, paired T-tests, and post-hoc Tukey’s 
Honest Significant Difference (HSD).

Results
Southeast Asian hot springs are a tractable system 
for interrogating photosynthetic biofilm biogeography
We sampled 395 photosynthetic biofilms from 40 neutral-
alkaline hot springs (39—66 °C, pH 6.4—9, Supplemen-
tary Table  S1) along a 2100 km transect of geothermal 
activity in Southeast Asia (Fig.  1A). Our approach to 
estimating biofilm community composition employed 

https://github.com/wwood/singlem
https://github.com/wwood/singlem
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sequencing of 16S rRNA genes from environmental sam-
ples (Supplementary Fig. S1). We acknowledge that the 
Earth Microbiome Project primers we used have recog-
nized limitations in detecting archaeal and eukaryal taxa. 
We therefore performed shotgun metagenome sequenc-
ing for a subset of samples (N = 12) to assess whether 
primer-bias may have affected our dataset (Supplemen-
tary Fig. S2). None of the Archaea or microbial Eukarya 
taxa reached the > 1% relative abundance required for 
inclusion in our ecological analysis, and rank abundance 
of bacterial phyla between metagenomes and 16S rRNA 
genes were largely congruent (Supplementary Fig. S2). 
Biofilms supported a diverse taxonomic composition 
comprising 28 bacterial phyla and 2 archaeal phyla, and 
communities were characterized by four dominant phyla 
comprising the Bacteroidota, Chloroflexota, Cyanobac-
teria, and Pseudomonadota (Supplementary Fig. S3). 
The most abundant and prevalent class in biofilms over-
all were the oxygenic photoautotrophic Cyanobacteria 
(Class Cyanophyceae) followed by the anoxygenic pho-
toautotrophic/photoheterotrophic Chloroflexota (Class 

Chloroflexia) thus underscoring the importance of pho-
tosynthesis to community assembly. Many of the geo-
thermal locations in our study are heavily utilized nearby 
for varied human activities including bathing, laundry, 
and food preparation (Supplementary Table  S1). Our 
sampling included only undisturbed springs however, to 
be cautious we performed an estimate of human-associ-
ated bacteria present in the biofilms. This revealed that 
the occurrence of 20 common human-associated genera 
contributed to only 0.145% of the total relative abun-
dance of ASVs.

Alpha diversity estimates of the rarefied 16S rRNA 
gene dataset revealed species richness, Pielou’s eve-
ness, Shannon’s diversity index, and Gini-Simpson’s 
index all displayed a weak but significant negative cor-
relation with temperature (Supplementary Fig. S4). This 
indicated an overall trend towards lower alpha diversity 
with increased abundance of fewer taxa as temperature 
increased. To better focus our subsequent ecological 
analyses, the rarified dataset was further stringently fil-
tered to contain taxa with relative abundance > 1% (572 

Fig. 1 A Map of Southeast Asian geothermal sites from which the 40 hot spring locations (red triangles) were sampled for photosynthetic microbial 
biofilms (N = 395). Alphabetic codes denote sampling location (see Supplementary Table S1). Taxonomic composition and Alpha diversity estimates 
are shown in Supplementary Figs. 3–4. B Distance decay plot illustrating the strong correlation between geographic distance and community 
dissimilarity for hot spring biofilm communities (N = 395). Geographic distance was calculated using pairwise geographic distances. Community 
dissimilarity was calculated using unweighted UniFRAC distances. Individual distance decay plots for different ecological groups of bacteria are 
shown in Supplementary Fig. S5
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ASVs). This final working dataset (rarified and filtered) 
was subjected to statistical analysis of beta diversity dis-
tribution patterns in relation to abiotic variables and 
biotic interactions, and ecological modelling to resolve 
the underlying mechanistic ecological drivers influencing 
the observed distributions.

Hot spring photosynthetic biofilms displayed putative 
biogeographic regionalization
Resolving large-scale biogeographic patterns for hot 
spring photosynthetic biofilms requires expanding scale 
beyond local systems so that regional biogeographic spe-
cies pools can be determined as a step towards establish-
ing global biogeographic patterns. Our dataset covered a 
large latitudinal gradient spanning 2100 km that elicited 
a strongly significant positive distance-decay correla-
tion between community phylogenetic distance and geo-
graphical distance of the hot spring communities (Fig. 1B; 
linear regression: R = 0.66, P < 2.2e-16). We also esti-
mated distance decay patterns for the different ecological 
guilds (identified using FAPROTAX) within the biofilms 
and this unveiled differential responses by certain groups. 
The strongest distance-decay relationships were appar-
ent for photosynthetic (R = 0.63, P < 2.2e-16) and het-
erotrophic (R = 0.64, P < 2.2e-16) guilds compared to a 
relatively weaker pattern for chemoautotrophs (R = 0.45, 
P < 2.2e-16) (Supplementary Fig. S5). Among the photo-
synthetic bacterial ASVs the Cyanobacteria accounted for 
the strongest distance decay signal (R = 0.61, P < 2.2e-16) 
whilst the Chloroflexia displayed the weakest pattern (R 
= 0.34, P < 2.2e-16) (Supplementary Fig. S5).

Visualization of beta diversity using PCoA ordination 
of unweighted UniFrac distances illustrated that commu-
nities clustered into six statistically supported putative 
biogeographic regions that we named North Thailand, 
Central Thailand, South Thailand, North Malaysia, South 
Malaysia, and Singapore (99% confidence intervals, one-
way PERMANOVA P < 0.001; Fig.  2A). The clustering 
of regions broadly matched latitudinal distance and was 
not autocorrelated to abiotic variables or sampling dates. 
None of the regions could be delineated by their suite of 

abiotic characteristics alone. Our study suggests that each 
region extended up to approximately 300 km. Taxonomic 
patterns that defined the observed biogeographic pat-
terns were visualized using a differential heat tree show-
ing pairwise comparisons of median proportion of reads 
between the six identified biogeographic regions (Fig. 2B, 
Supplementary Fig. S6). This illustrated that whilst ther-
mophily appears to be a widespread trait among diverse 
phyla, some taxonomic groups and notably the Bacte-
roidota, Chloroflexota, Cyanobacteria, and Proteobac-
teria (Pseudomonadota) were differentially abundant in 
pairwise comparisons between regions. Despite these 
differences in beta diversity the communities displayed 
consistent predicted functional composition (identified 
using FAPROTAX) that was dominated by oxygenic pho-
tautotrophy and aerobic chemoheterotrophy (Fig. 2C). As 
the grouping of biogeographic regions was also accompa-
nied by significant betadispersion (P < 2.2e-16, post hoc 
Tukey P < 0.001) we then set-out to provide further evi-
dence to support or refute the validity of biogeographic 
regions through identification of core microbiomes and 
biotic interactions.

Distinct core microbiomes and biotic interactions further 
support delineation of biogeographic regions
We identified specific taxa that were most abundant 
in the biogeographic regions (Fig.  3A, Supplemen-
tary Fig. S7). Eighteen of the 25 most abundant gen-
era were photosynthetic bacteria and trends for various 
ecological guilds highlighted that the Cyanobacteria 
(Cyanophyceae) displayed the most region-specificity/
dominance within the Leptolyngbyaceae, Phormidiaceae, 
and Pseudanabaenaceae. This emphasizes the importance 
of cyanobacteria as potential keystone taxa in biofilm 
communities and reinforces the view that they can be 
used as a key descriptor for specific biofilms. Core micro-
biome analysis revealed that whilst there was no pan-
Southeast Asian core microbiome, each biogeographic 
region displayed a distinct core comprising 49–99% of 
ASVs (Fig. 3B). The Cyanobacteria, through various pho-
tosynthetic lineages, were part of every core microbiome 

Fig. 2 A Beta diversity patterns for hot spring photosynthetic biofilms (N = 395) indicated statistically supported biogeographic regions. Beta 
diversity was estimated using Principal Coordinate Analysis of unweighted UniFRAC distances (Confidence interval 99%), where NT = North 
Thailand, CT = Central Thailand, ST = South Thailand, NM = North Malaysia, SM = South Malaysia, SG = Singapore. Symbol shapes denote hot spring 
location codes (see Supplementary Table S1). B A Differential heat tree matrix showing: hierarchal taxonomic coverage represented as nodes, 
number of ASVs assigned to each taxon as node size/width, and significant differences in pairwise comparisons of median proportions of reads 
between biogeographic regions as colored nodes determined using a Wilcox rank‑sum test. Bacterial and archaeal lineages that were relatively 
enriched in biofilms are depicted as colored regions in the rows (green branches and nodes) and columns (brown branches and nodes). The 
labelled gray tree on the lower left is a key for the smaller unlabeled trees in the matrix. Additionally, a heat tree showing all levels of taxonomic 
coverage with all nodes labeled is shown in Supplementary Fig. S6. C) Functional profiling of hot spring photosynthetic biofilms using FAPROTAX 
revealed all biofilm samples were dominated by oxygenic photoautotrophy and aerobic chemoheterotrophy

(See figure on next page.)
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underscoring biofilm dependence upon photoautotrophy 
for energetic and carbon input to the system. Whilst the 
Chloroflexota were also core to all regional microbiomes 

they variously comprised anoxygenic photosynthetic (e.g. 
Chloroflexus, Chloroploca, Roseiflexus) or non-photo-
synthetic (e.g. RBG-13–54-9, Anaerolineae) taxa. Each 

Fig. 2 (See legend on previous page.)
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of the core regional microbiomes supported multiple 
ASVs associated with nitrogen-fixing taxa and this likely 
reflected the low combined nitrogen levels in hot spring 
water (Supplementary Table S1).

Recognizing the potential influence of biotic interac-
tions in community assembly of biofilms, we performed 
a co-occurrence network analysis to identify putative 
relationships between taxa occurrence in the com-
munities (Fig.  4, Supplementary Fig. S8). This revealed 
region-specific modules of interaction and inter-module 

interaction that spanned multiple trophic levels and were 
dominated by Alphaproteobacteria, Anaerolineae, Bacte-
roidia, Chloroflexia, Cyanophyceae, and Gammaproteo-
bacteria (Fig. 4, Supplementary Fig. S8). Hub taxa within 
and among modules comprised photosynthetic Cyano-
bacteria and Chloroflexia although some photosynthetic 
taxa that were part of core microbiomes were not identi-
fied as hub taxa. Interactions between taxa were further 
visualized using chord diagrams to highlight associa-
tions (Fig. 4). This revealed a particularly strong putative 

Fig. 3 A Relative abundance of the 25 most abundant ASVs in each sample (N = 395) shown clustered at genus level (bar plots). The coloured 
bars at the circumference of the iris plot denote biogeographic region for each biofilm sample. Iris plots for individual ecological groups of taxa 
are shown in the Supplementary Fig. S7. B Composition of the core microbiome for biofilms in each biogeographic region (N = 395). The core 
microbiome was defined as comprising ASVs with ≥ 95% prevalence and > 1% relative abundance. Small pie charts indicate the core versus variable 
microbiome, and large pie charts show the taxonomic composition of ASVs in each core microbiome clustered at genus level
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relationship between Aggregatlineales A4b and several 
other photosynthetic and heterotrophic taxa. Overall, the 
most prolific interactions occurred between Anaerolin-
eae ASVs and other phototrophic and heterotrophic taxa 
suggesting the Anaerolineae occupy a key role in facilitat-
ing metabolic cooperation within the biofilms.

Influence of major environmental variables on community 
assembly declined with increasing spatial scale
A core assumption in extreme environments is that 
strong selection pressure arises due to the influence 
of harsh environmental/geochemical conditions. To 
determine potential deterministic influence of major 

Fig. 4 Putative biotic interactions for bioregions estimated using co‑occurrence network analysis. Bubble plots show the patterns of interaction 
among and within modules of interaction (i.e. putative biotic interactions) at Class level, ranked in order of contribution to interactions for the top 
ten interacting Classes. Module connectors are shown by circles and module hubs are shown by triangles. Symbol size denotes relative abundance. 
Red symbols denote mean level of interaction. Interactions for the whole community in each region are shown in Supplementary Fig. S8. Chord 
diagrams illustrate major associations between abundant ASVs clustered at genus level. Chord thickness denotes relative strength of associations
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environmental variables on community assembly we 
first selected variables that did not display collinearity 
with each other or with geographic distance (collinear-
ity threshold = Pearson’s [r] > 0.7, Supplementary Fig. S9). 
We then employed the widely used Mantel’s test to test 
for linear correlations of biotic data against major geo-
graphic and environmental variables relevant to biofilm 
communities (Fig. 5Ai, Supplementary Fig. S10). Signifi-
cant positive correlations were observed for pH, temper-
ature, carbonate, phosphate, and hydrogen sulfide; whilst 
a significant negative correlation occurred for conduc-
tivity used as a general proxy for the concentration and 
valence of soluble ions (overall Mantel’s r = 0.12). The 
relative strength of association varied with biogeographic 
regions (Supplementary Fig. S10) and ecological guilds, 
with photosynthetic taxa displaying the strongest corre-
lations (Fig. 5Ai). Multivariate variance partitioning anal-
ysis revealed that overall, the variables with the strongest 
combined explanatory power comprised pH, hydrogen 
sulfide, conductivity, and carbonate (Fig.  5Aii, Supple-
mentary Fig. S10). For individual locations the mean 
overall variation explained by these abiotic variables was 
62.6%, and this declined to 55% at the region scale, and 
26.8% at the inter-regional province scale (Fig. 5Aiii, Sup-
plementary Fig. S10).

Recognizing that environmental gradients are seldom 
truly linear, we also employed machine learning Random 
Forest analysis with ensemble models of fit to abiotic var-
iables against the biotic dataset (Fig.  5B). This corrobo-
rated our findings from linear correlations and identified 
that overall conductivity, hydrogen sulfide, and pH were 
the most influential variables on large scale biogeogra-
phy of biofilm communities. For some regions conduc-
tivity and carbonate were relatively more important for 
the photosynthetic guild than for the overall community, 
whilst for chemoautotrophs and chemoheterotrophs 
temperature was relatively more important (Fig. 5B). To 
further identify the impact of this deterministic influ-
ence on putative biofilm community function, we cor-
related predicted functional traits with abiotic variables 
(Fig.  5C). This indicated that oxygenic and anoxygenic 

photosynthesis were positively correlated with carbonate, 
hydrogen sulfide, and pH; and negatively correlated with 
conductivity and phosphate. Conversely, chemoauto-
trophic metabolism was most positively correlated with 
temperature and heterotrophy was negatively correlated 
with most abiotic variables.

The contribution of stochastic and deterministic processes 
varied with spatial scale
Having identified the potential influence of major abiotic 
variables on community assembly, we repeated our linear 
and ensemble correlation analysis with inclusion of geo-
graphic distance (latitude) as a variable (Supplementary 
Fig. S11). This suggested that distance was also influen-
tial to the observed community distribution and so we 
then set out to quantify the broader relative influence 
of niche and neutral ecological drivers on the observed 
community structure using statistical ecological model-
ling. By interrogating the phylogenetic data using a net 
relatedness index against that expected under a purely 
random community assembly using null models we were 
able to discern the influence of ecological drivers on spa-
tial assembly of communities whilst avoiding the limi-
tations and bias associated with enforcing correlations 
against abiotic variables. Net relatedness Index (betaNRI) 
and Raup-Crick distances were calculated as a standard-
ized measure of mean phylogenetic distance to the near-
est taxon in the community (Fig.  6A). The beta nearest 
taxon index (betaNTI) was then calculated to infer con-
tribution to ecological convergence or divergence using 
null models for different spatial scales: province (inter-
region meta-community), region, location, site; and for 
the different ecological guilds: photosynthetic, chemo-
autotrophic, and chemoheterotrophic. This revealed that 
whilst deterministic selection (homogenous selection) 
was the dominant process for individual sites, loca-
tions, and regions; at the inter-regional province scale 
the dominant process for turnover of the metacommu-
nity was stochastic ecological drift (Fig.  6B). The domi-
nant ecological drivers also varied among the different 
ecological guilds for the metacommunity and indicated 

(See figure on next page.)
Fig. 5 A The influence of non‑colinear abiotic variables (Supplementary Fig. S9) on observed taxonomic composition for all taxa 
plus photosynthetic, chemoautotrophic, and chemoheterotrophic fractions of the community, (i) Mantel’s Test and Pearson’s correlation 
between unweighted UniFRAC phylogenetic distances and abiotic variables indicating strength of correlations for the overall meta‑community, 
(ii) Variance Partitioning using transformed Hellinger distances versus abiotic variables indicating the relative contribution from the four most 
influential variables, (iii) relative contribution of the four topmost variables to observed variation in community distribution at different spatial 
scales. Individual plots for each region are presented in Supplementary Fig. S10. B Random Forest ensemble modelling of the most influential 
variables on observed community distribution for the overall meta‑community, each region, and ecological guilds. N/A denotes no correlation 
due to insufficient taxa. The more influential variables occupy locations further to the left of each bubble plot. C Influence of abiotic variables 
on predicted metabolic function of biofilms was estimated using Pearson’s Correlation [r]. Red colour denotes positive correlations, and blue colour 
denotes negative correlations. * denotes P = < 0.05, ** denotes P = 0.01, and *** denotes P = < 0.001



Page 10 of 18George et al. Environmental Microbiome           (2025) 20:50 

Fig. 5 (See legend on previous page.)
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that chemoheterotrophs were under greater influence 
from homogenous selection compared with the photo-
synthetic and chemoautotrophic guilds (Fig.  6B). These 
findings corroborated our other lines of evidence that the 
hot spring photosynthetic biofilm community is subject 
to differential influence from ecological drivers at differ-
ent spatial scales.

Discussion
Our findings expand the global inventory of taxa asso-
ciated with photosynthetic biofilms in hot springs and 
addressed an important biogeographic data gap for 

Southeast Asia where hot springs are common and 
yet have not been previously studied in a systematic 
manner. We resolved the bounds of six putative bio-
geographic regions and provide evidence that the dif-
ferential contribution of stochastic and deterministic 
ecological drivers to community assembly at different 
spatial scales explains the mechanistic basis for their 
observed biogeography. Identifying this phenomenon 
across a broad geographic scale among neutral-alkaline 
hot springs with differing physicochemical properties is 
an important step towards the delineation and practi-
cal use of these habitats as tractable model systems for 
photosynthetic biofilms in microbial ecology.

Fig. 6 Quantitative estimation of the contribution of ecological drivers to community assembly. A Net relatedness Index was (betaNRI) 
was calculated as a standardized measure of mean phylogenetic distance to the nearest taxon in the community at each site. Letters denote 
significant between associations (P < 0.001). B The beta nearest taxon index (betaNTI) was calculated to infer contribution to ecological 
convergence or divergence using Raup‑Crick null models (RCbray) for different spatial scales: overall (province), region, location, site (arrows denote 
major shifts due to spatial scale); and for the different ecological guilds (photosynthetic, chemoautotrophic, and chemoheterotrophic) overall
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Southeast Asian hot springs displayed observable 
biogeographic patterns
The phenomenon of distance decay may reflect a range 
of influences on community diversity including envi-
ronmental filtering, ecological drift, diversification, and 
dispersal limitation [56, 57]. The strong distance decay 
signal for the overall community in our study indicated 
that one or more of these factors was influencing the 
biogeography of biofilms. We also showed that distance 
decay patterns were maintained regardless of a nega-
tive correlation between alpha diversity and temperature 
when plotted for individual ecological guilds and this 
allowed us to be confident that the signal was not biased 
by deeply-branching lineages that may skew UniFrac esti-
mates, such as for the Aquificota that were associated 
with higher temperature sites. Of note was the difference 
in strength for distance decay signal between photosyn-
thetic groups, with photoautotrophic Cyanobacteria 
(Cyanophyceae) displaying a significantly stronger signal 
than for the photosynthetic Chloroflexota (Chloroflexia) 
and other photosynthetic bacteria. This suggested that 
the Cyanobacteria were the most important phototro-
phs for delineating biogeographic patterns in hot spring 
photosynthetic biofilms, and validates descriptive stud-
ies that have generally relied on cyanobacterial taxa to 
describe different biofilms [19].

The beta diversity clustering of communities indicated 
that biofilm communities were resolved into six statisti-
cally supported putative regions. Each region extended 
up to ~ 300 km and so this may represent the extent of 
abiotic influence and/or dispersal. Each region was fur-
ther characterised by a distinct core microbiome where 
each core comprised Cyanobacteria, Chloroflexota, and 
other variable taxa. Core microbiomes in tropical soils 
have been linked to functional stability of communities 
[58], and we speculate that they perform a similar role 
in hot spring biofilms. Additional evidence for distinct 
patterns in putative biotic interactions added further 
support that the bioregions reflected genuinely differ-
ent communities. Microbial interactions are thought to 
present a useful metric of putative contribution to com-
munity function [59], and thus our findings highlight that 
the distinct interaction profiles also reflect functionally 
distinct communities. A notable difference between core 
microbiome and biotic interaction estimates was that the 
A4b (Aggregatilineales) ASVs were part of only one core 
microbiome and yet emerged as the most influential taxa 
to biotic interactions for all hot spring regions. This may 
reflect the growing awareness that less prevalent (condi-
tionally rare) taxa may have important roles in biogeo-
chemical cycling and community function [60]. Overall, 
the high degree of taxonomic substitution between taxa 
in the various ecological guilds (photosynthetic, 

chemoautotrophic, and chemoheterotrophic) among 
the different biofilms did not significantly affect the pre-
dicted dominant functional role of biofilms. We were 
therefore confident that comparisons across the wide 
geographic scale were made for similar biofilm commu-
nities that were dominated functionally by photoauto-
trophy and aerobic chemoheterotrophy. Whilst there are 
some limitations to inferring metabolic function based 
upon 16S rRNA gene sequences, the approach is widely 
used in ecological studies and has strong fidelity to broad 
metabolic categories [48, 61].

The findings also expand the described biogeographic 
range into Southeast Asia for several taxa within groups 
including the Aquificota, Bacteroidota, Chloroflexota, 
Cyanobacteria, and Proteobacteria (Pseudomonadota). 
This will assist with future global studies to resolve 
potential endemism in hot spring taxa that are currently 
hampered by a patchy global dataset. In addition, nearby 
human usage that was a potential source of transient taxa 
did not significantly impact our estimates of biofilm com-
position and so we anticipate a wide variety of locations 
may be amenable for use in future studies regardless of 
their usage provided that appropriate quality control 
measures are employed. Previous studies have recorded 
distinct phylogenetic lineages of cyanobacteria across 
inter-continental distances in hot springs [30], and this 
mirrors observations for other ecological groups [18, 32, 
62]. Taken together with our findings this suggests that 
regions defining similar communities occur in hot spring 
photosynthetic biofilms at the scale of <  ~ 300 kms but 
that observations at broader spatial scales (e.g. inter-
continental) may reflect greater differences and potential 
endemism arising from yet unresolved contribution from 
stochastic and deterministic drivers.

Cyanobacteria and Chloroflexota interactions may drive 
biofilm community assembly and functionality
We demonstrated that, as for globally distributed soil 
samples [6], a relatively small number of the overall taxa 
dominated biofilms and overall most taxa were relatively 
rare. Different photosynthetic biofilms were readily char-
acterized by their dominant cyanobacterial component, 
and also supported photosynthetic or non-photosyn-
thetic Chloroflexota. A number of studies at a well-stud-
ied location, Yellowstone National Park, have highlighted 
that the Synechococcus biofilms (which are not encoun-
tered in Southeast Asian hot springs) typical of higher 
temperatures within the photic gradient invariably co-
occur with anoxygenic photosynthetic Chloroflexia 
such as Chloroflexus and Roseiflexus [63]. Our study 
corroborates this co-occurrence for Thermosynechococ-
cus biofilms in Southeast Asia but also highlights that 
photosynthetic Chloroflexota may not be essential taxa 
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for biofilms that are dominated by other cyanobacterial 
groups. Instead, our core microbiome analysis points to 
a common association for all biofilm types that includes 
a Cyanobacteria and Chloroflexota component where the 
latter may or may not be photosynthetic. This was fur-
ther supported by our co-occurrence network analysis 
and suggests that interaction may lie with a metabolic 
syntrophy that does not require anoxygenic photosynthe-
sis. Therefore, we speculate that non-photosynthetic pro-
cesses such as sulfur cycling may be a key contribution 
from this phylum in biofilm ecology. This is supported 
by the demonstration of physiological linkages between 
Cyanobacteria and sulfur-dependent metabolism in the 
Chloroflexota [64–66]. A further observation revealed 
that the photoautotrophic Cyanobacteria involved in the 
most significant correlations belonged to genera with 
known nitrogen-fixing taxa suggests that this group are 
important for both carbon and nitrogen input to the 
community. This is consistent with physiological obser-
vations that cyanobacteria are capable of nitrogen fixa-
tion in hot springs [67, 68]. The FAPROTAX functional 
prediction data in our study supported these observa-
tions although we caution against over-interpreting 
findings based on inference of function from taxonomic 
marker genes.

Among the heterotrophic taxa those associated with 
cellulolytic activity, e.g., Cytophaga and Ignavibacte-
rium, were notably abundant and this likely reflects the 
large allochthonous input of plant debris to hot springs 
erupting in forested areas within tropical Southeast Asia 
[35]. Other heterotrophic taxa indicated hot springs 
have potential in bioprospecting for industrial use, e.g., 
Ideonella, a genus associated with breakdown of plastic 
polymers [69]. The temperature range for the hot springs 
in our study falls within the lower range for many che-
moautotrophic thermophiles [21], and their distribu-
tion was patchier compared to other ecological groups. 
The chemoautotrophic taxa were recovered at very low 
abundance in biofilms but within the chemoautotrophic 
group the hydrogen-oxidising Venenvibrio (Aquifi-
cales), anaerobic sulfur-reducing Thermodesulfovibrio 
(Thermodesulfovibrionales), and putatively facultatively 
autotrophic Leptospiraceae ASVs were most abundant 
and displayed some regionalism (Fig. S7). These alter-
nate autotrophic pathways may be important supple-
ments to the largely photoautotrophic metabolism in 
biofilms, and the sulfur-reducing taxa indicate that bio-
films likely support steep micro-environmental gradients 
within the biofilm structure that might allow anaerobic 
metabolism within a largely aerobic biofilm, and this 
is consistent with recent observations in a Chilean hot 
spring that chemoautotrophic sulfate reduction was sup-
ported in photosynthetic biofilms [65]. Future focus on 

functional meta-omics in biofilms will be important to 
gain improved insight on how metabolic functionality 
may influence their ecological distributions.

Deterministic influences only partially explained observed 
biogeographic distributions
Correlations indicative of deterministic environmental 
filtering were demonstrated for pH, carbonate, conduc-
tivity, temperature, and hydrogen sulfide, although no 
single abiotic variable emerged as the most explanatory 
across all sites. The highly significant association with 
pH aligns with its perceived dominant role in determin-
ing biogeographic patterns in other geothermal habitats 
[13, 17, 70, 71] and the soil biome [5, 6]. Similarly tem-
perature and sulfide have known effects on microbial 
distributions in hot springs [27, 29, 65, 72]. It remains to 
be resolved how other factors such as conductivity and 
carbonate may exert deterministic influence on thermo-
philic microorganisms at the levels encountered in hot 
springs. Our findings underscore the complex interplay 
of major abiotic stressors on biofilms and is corroborated 
by several location-specific studies identifying these vari-
ables as important to biofilm community assembly [12, 
23, 31]. Different ecological guilds and their predicted 
functional traits responded uniquely to abiotic variables, 
revealing that broad community analyses might obscure 
specific taxon responses. Oxygenic and anoxygenic pho-
tosynthetic traits positively correlated with pH, hydro-
gen sulfide, and carbonate, aligning with their adaptation 
to these variables in hot springs and other systems [35, 
73–75]. Similarly, chemoautotrophic traits were posi-
tively correlated with hydrogen sulfide and temperature, 
consistent with their adaptation to extreme environ-
ments [21]. Conversely, the chemoheterotrophs displayed 
negative correlations with most abiotic variables, indi-
cating these were likely thermotolerant taxa potentially 
near their tolerance limits under poly-extreme conditions 
within the photosynthetic biofilms.

A notable observation was the effect of spatial scale 
on the influence of abiotic variables toward diver-
sity patterns. The study showed a significant decrease 
in the explanatory power of major abiotic variables 
with increasing spatial scale (local: 62.6% vs. province: 
26.8%). This pattern reflects how habitat heterogeneity 
increases with spatial scale [76], emphasizing the need 
to also quantitatively consider spatial scale when exam-
ining abiotic influences on biogeographic patterns. We 
acknowledge that our study did not measure all potential 
abiotic variables due to logistical constraints of sampling 
remote locations. We focused on major variables known 
to significantly correlate with distribution of hot spring 
photosynthetic biofilms as general indicators of abiotic 
influence [12, 23, 25, 31, 77, 78]. However, the potential 
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for bias due to under-estimation of deterministic influ-
ence from unmeasured variables such as trace metals, 
dissolved oxygen or carbon cannot be excluded, although 
they have typically shown very weak correlation with hot 
spring community assembly relative to measured major 
abiotic variables such as temperature, pH, conductivity, 
and sulfide [17, 23]. The weak explanatory power of envi-
ronmental variables for microbial distribution patterns is 
emerging as common in hot springs and other habitats 
[13, 17, 23, 71, 79], with additional factors such as geo-
logical setting, tectonic history, and biotic interactions 
potentially playing roles [15, 80, 81]. The biogeographic 
regions identified in our study, spanning hundreds of kil-
ometres, only partially aligned with underlying geological 
faults. This suggests that a complex interaction of deter-
ministic and stochastic drivers may explain the observed 
biogeographic patterns.

Spatial scale modulates the relative influence 
of deterministic and stochastic drivers on biogeography
Having demonstrated the potential deterministic influ-
ence of major abiotic variables as well as evidence for 
distance-related patterns and biotic interactions between 
ecological guilds within biofilms, we applied statisti-
cal models to further resolve the broader interaction of 
these multiple ecological drivers on community. Statisti-
cal approaches using null models are a useful tool to gain 
insight on the influence of stochastic and deterministic 
ecological drivers such as selection, dispersal, ecologi-
cal drift, and speciation that may be shaping microbial 
biogeography [82]. The approach avoids the biases that 
are associated with correlation-based analyses of com-
munity distribution with regard to abiotic variables [83], 
because it does not enforce an a priori relationship with 
potential drivers. Our study provides the first evidence 
for the relative influence of these processes on photosyn-
thetic microbial biofilms in hot springs at different spa-
tial scales. The fidelity of null model outputs is strongly 
dependent on the scale and depth of the input matrix, 
and so large-scale studies such as ours offer important 
novel insight on large-scale processes. A notable obser-
vation was the lack of influence from dispersal limitation 
and despite earlier hypotheses that this may be a major 
explanatory variable our data is consistent with recent 
studies that atmospheric microbial dispersal occurs 
across large inter-continental distances [84, 85]. It is also 
worthy of mention that dispersal mechanisms specific 
to hot springs such as via subsurface aquifers are as yet 
uncharacterized but may emerge as influential.

The most influential process contributing to observed 
turnover at individual sites was deterministic homog-
enous selection, and this gradually declined with increas-
ing spatial scale until at the inter-regional province scale 

stochastic ecological drift was identified as the major 
driver, concurrent with variable selection surpassing 
homogenous selection as a deterministic driver. This 
novel finding suggests a meta-community where sto-
chastic changes in regional population size are the major 
driver [82], and was testable by our application of null 
models to the large phylogenetic dataset [83]. This find-
ing is congruent with our other multiple lines of evidence 
and analyses demonstrating the effects of environmental 
variables and biotic interactions on the meta-community. 
Ecological drift is a stochastic process characterized by 
weak selection and rare movement of taxa between com-
munities. We envisage these evolutionary forces to oper-
ate as continuous variables in hot springs. Thus, whilst 
moderate levels of both movement (dispersal) and birth–
death (selection) are expected, neither process is domi-
nant. Hence, this has also been termed an ‘undominated’ 
process [83]. This contrasts with the more traditional 
view that spatial turnover in hot spring biofilms might 
arise largely from spatial differences in abiotic conditions 
(variable selection) and may in part reflect the narrow 
range of habitat conditions for photosynthetic biofilms in 
hot springs. Our findings highlight that the 73% variance 
in communities at the inter-regional province scale that 
was unexplained by abiotic variables was most likely due 
to the stochastic influence of ecological drift. Our obser-
vations also mirror a recent study that revealed the same 
pattern occurs for large-scale biogeographic distributions 
of animal communities where homogenous selection 
and stochasticity overruled heterogenous selection [86]. 
This may emerge as a universal rule in terms of the driv-
ers of large scale biogeographic distributions, and help 
to resolve the large ‘unexplained’ variance in microbial 
community structure recorded in other biogeographic 
studies of hot springs [17, 23] and for other environments 
such as soils [87].

We further demonstrated a differential contribution 
of ecological processes acting on the functional guilds 
within communities. Whilst overall and for photosyn-
thetic and heterotrophic taxa ecological drift was the 
major factor, autotrophic taxa were subject to somewhat 
greater influence from variable selection compared to 
homogenizing selection than for chemoheterotrophs. 
This points to the autotrophs exhibiting distributions 
more consistent with niche specialists, compared to het-
erotrophic taxa tending towards being generalists with a 
wider niche breadth [88]. This may emerge as a common 
feature of photosynthetic biofilms in diverse extreme 
environments given our findings also mirror the rela-
tionship observed for cyanobacteria-dominated biofilms 
in extreme deserts [89]. Possible explanations for the 
observed stochastic influence in our study may include 
extinction events due to tectonic variability e.g. thermal 
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surges [90], or thermal variability due to monsoon flood-
ing in the tropics [91]. We envisage these may result in 
genetic bottlenecks for some populations in hot springs 
and thus contribute to genetic drift. In addition, ancient 
historical legacies may contribute to stochasticity, as 
observed for persistent photosynthetic microbial com-
munities in deserts and lakes [92, 93], and for chemoau-
totrophic bacteria in volcanic calderas where geothermal 
history explained more variation than extant geochemi-
cal or geographic variables [81]. Other non-extreme 
aquatic freshwater and marine photosynthetic microbial 
populations have also been shown to exhibit a lack of dis-
persal limitation and yet exhibit high levels of stochastic 
assembly in the absence of satisfactory explanation by 
environmental variables [92, 94], and this highlights a 
general similarity that may emerge as typical in diverse 
microbial systems.

Conclusion
Our study employed multiple lines of evidence to delin-
eate six biogeographic regions for photosynthetic bio-
films in Southeast Asian hot springs. Addressing a major 
regional biodiversity knowledge gap, our research paves 
the way for enhanced global comparisons. The find-
ings offer new insight on the mechanistic processes that 
underpin the biogeographic patterns for photosynthetic 
hot spring biofilms. We elucidated the influence of spatial 
scale on the interplay between stochastic and determinis-
tic ecological drivers within this system, and showed that 
homogenizing selection which dominates at local scales 
gives way to ecological drift with increasing distance and 
this aligned with delineation of biogeographic regions. 
Photosynthetic biofilms are also widely distributed in 
diverse marine and terrestrial environments and so our 
findings using the hot springs model system have broad 
applicability in the ongoing effort to identify potential 
universal constraints on the drivers of global microbial 
biogeography.
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