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Abstract 

Background Soil heterogeneity has been acknowledged to influence plant growth, with the small-scale soil het-
erogeneity always being overlooked in practice. It remains unclear how rhizosphere soil biotics and abiotics respond 
to soil heterogeneity and how rhizosphere interactions influence crop growth.

Results In this study, we planted fava beans in a farmland around an e-waste dismantling site, and a distinct bound-
ary (row spacing is 30 cm) was observed in the field during the flowering stage, which divided fava beans phenotypes 
into two distinct groups (Big vs Little) based on the differences in biomass and height. Soil total concentrations of As, B, 
Co, Cr, Cu, Pb, Sr, Zn, Ni, Cd and soil pH significantly differed in the rhizosphere of fava beans in the two adjacent rows, 
which were located on either side of the boundary, with a row-spacing of 30 cm. Random Forest analysis demonstrated 
that these differentiated soil properties (soil pH, total As, B, Cd, Co, Cr, Cu, Mo, Ni and Zn) substantially influenced fava 
beans growth (height and biomass). Metagenomic sequencing showed that microbial taxa were significantly enriched 
their abundance in rhizosphere soils between the two groups of fava beans, with eukaryotic taxa being more sensi-
tively affected. A total of 20 metabolites including coniferyl alcohol, jasmonic acid, resveratrol, and L-aspartic acid, etc. 
were significantly correlated with fava beans growth. These metabolites were significantly enriched in 15 metabolic 
pathways (nucleotide metabolism, pyrimidine metabolism, purine metabolism, biosynthesis of plant secondary metab-
olites, lysine biosynthesis, etc.). Furthermore, 11 microbial genera involved in these metabolic pathways, and these 
genera were differentially enriched between the two groups and significantly correlated with fava beans growth.

Conclusions Overall, the integrated analysis of multi-omics revealed that soil properties heterogeneity at small-scale 
altered the rhizosphere differential microorganisms and metabolites, which functionally influenced fava beans growth 
and tolerance to environmental stress. Notably, even soil heterogeneity at such a small spatial scale can cause signifi-
cant differences in plant growth, and the comprehensive explorations utilizing multi-omics techniques provide novel 
insights to the field management, which is crucial for the survival and sustainable development of humanity.
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Background
With the continued growth of the global population, the 
demand for food is projected to double by 2050, which 
will present unprecedented challenges for the sustain-
able development of human society [1]. Increasing the 
productivity of existing arable land has been recognized 
as an effective strategy to mitigate food shortages [2]. 
Crop yield is determined by a variety of factors, including 
soil nutrient concentrations, physicochemical proper-
ties, contaminants and microbiome [3–6]. However, soil 
properties including physical, chemical, and biological 
properties exhibit spatial heterogeneity at different spa-
tial scales [7–9]. Soil heterogeneity could be attributed to 
various factors. At broader scales, factors such as climate, 
geographic location, light, and vegetation cover could 
substantially affect soil heterogeneity [10, 11]. Addition-
ally, human activities have been identified as major driv-
ers to soil heterogeneity at moderate to small scale [12]. 
For instance, e-waste dismantling operations have been 
associated with elevated levels of Cd, Cu, and Pb in soils 
compared to areas without such activities, as observed in 
Zhejiang Province, China [13].

Soil heterogeneity could potentially impact crop 
growth and yield at different spatial scales. A large-scale 
study in northern China revealed a significant positive 
correlation between potato yield and a soil quality index, 
with soil pH identified as the primary limiting factor [14]. 
At the 1-km scale, soil moisture heterogeneity was shown 
to be the main driver of cowpea (Vigna unguiculata 
(L.)) yield [15]. Moreover, rhizosphere metabolic pro-
cesses had significance effects on soil properties, micro-
bial community assembly, nutrient availability and plant 
growth. For instance, elevated ethylene emissions from 
the legume peanut rhizosphere were found to increase 
the relative abundance of specific actinobacterial species, 
and thereby reshaping the whole rhizosphere microbial 
network, which might be able to improve availability of 
essential nutrient for plant growth [3]. Similarly, volatile 
organic compounds (VOCs) emitted by potato plants 
had been shown to promote the growth of neighboring 
tomato plants by modulating the tomato rhizosphere 
microbiota [16]. In another case, methyl ferulate exuded 
by tobacco roots significantly suppressed P. nicotianae 
and recruited disease-suppressive rhizosphere microbes, 
thereby contributing to the control of tobacco black 
shank disease and improving disease resistance [17]. 
However, the biochemical mechanisms in the differences 
of plant growth, which triggered by soil heterogeneity, 
were still poorly clarified, possibly due to the complex 
constitutes and interactions exist in the rhizosphere.

In recent  years, omics technologies have signifi-
cantly advanced our understanding of the underlying 

mechanisms of changes in rhizosphere metabolites and 
soil microbiomes, which functionally contribute to plant 
growth [18, 19]. Under Cu stress, significant reductions 
in the metabolism of purine and nucleotide, which rhizo-
sphere metabolites involved in, were identified as the 
reason for the inhibition of rice growth [20]. Changes in 
the structure of rhizosphere microbial community, along 
with the regulation of gene expression related to glu-
tathione, phytochelatin, and membrane transporter path-
ways, were identified as key detoxification mechanisms 
in rice following Si addition [21]. A previous study dem-
onstrated that heterogeneity in microelements existed in 
soils located across two provinces in China, where Mg 
and EC were positively correlated with monoterpene 
biosynthesis and growth of Citrus reticulata ‘Chachi’, 
as revealed by metagenomic and transcriptomic analy-
ses [22]. Integrating of multi-omics data can facilitate a 
comprehensive understanding of the functional roles of 
rhizosphere microorganisms and metabolites, thereby 
providing novel insights into the mechanisms underlying 
crop growth.

Over the past decades, long-term e-waste dismantling 
activities conducted in unregulated workshops have fre-
quently occurred in the coastal regions of southeastern 
China, leading to the accumulation of heavy metals and 
organic pollutants in agricultural soils [23, 24]. These 
anthropogenic activities might result in small-scale het-
erogeneity of soil pollutants, which potentially affects 
plant growth [25]. Fava beans are important local crop 
with high tolerance to environmental stresses, low pol-
lutant accumulation capacity (Table. S1), and strong 
nitrogen fixation [26]. However, few studies have inves-
tigated the effects of the small-scale soil heterogeneity on 
fava beans growth and their stress tolerance.

In this study, a field experiment was conducted in farm-
land adjacent to an e-waste dismantling site in Taizhou 
City, Zhejiang Province, China, where fava beans were 
planted. During the flowering stage of plant growth, we 
observed a clear boundary dividing the phenotypes of 
fava beans into two distinct groups: the Big group (plants 
with relatively heavier biomass and higher height) and 
the Little group (plants with relatively lighter biomass 
and lower height). These two groups were located on 
either side of the boundary, with a row spacing of 30 cm. 
Therefore, the soil properties, consisting of elements, 
nutrients, enzymatic activities, and physicochemical 
properties of the rhizosphere soils in the two adjacent 
rows were determined. The biomass, height and antioxi-
dant enzyme activities of fava beans in the two adjacent 
rows were also measured. Metagenomics and metabo-
lomics analyses were conducted to investigate differences 
in rhizosphere soil microbiome, metabolite profiles, and 
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associated metabolic pathways between the two groups 
of fava beans in adjacent rows. A combined multi-omics 
approach was used to uncover the mechanistic effects of 
small-scale soil heterogeneity on fava beans growth. We 
hypothesized that the distinct phenotypes of fava beans 
were caused by soil heterogeneity. Furthermore, we 
hypothesized that soil heterogeneity significantly altered 
rhizosphere soil microbiome and metabolites, which 
functionally contribute to fava beans growth.

Methods
Field experiment design and management
The experimental farmland, contaminated by e-waste 
dismantling, was located in Taizhou City, Zhejiang Prov-
ince. Fava beans were planted in rows spaced 30  cm 
apart. Field management and fertilization were the same 
as the local measures. During the flowering stage of fava 
beans growth, we observed a distinct boundary in the 
field, and on both sides of the boundary, there were sig-
nificant differences in phenotype of fava beans (Fig. S1).

Plant and soil sampling
Fava beans plants with significant phenotypes in the two 
adjacent rows were randomly sampled for analysis, and 
their corresponding rhizosphere soils were simultane-
ously collected (Fig. S1). The whole plants were meas-
ured for biomass and height, and also divided into parts 
of roots, stems and leaves for antioxidant enzyme assays. 
The rhizosphere soil of each plant was determined for 
soil properties and elements concentration, metagen-
ome and metabolome analyses. The plant samples used 
for antioxidant enzyme determination, and the soil sam-
ples used for omics analyses were immediately placed in 
insulated box with ice and transferred to a -80 °C freezer 
within 6  h. To ensure sampling representativeness, all 
samples were randomly collected in quintuplicate.

Soil samples preparation before determination.
50.0 g of each soil sample was immediately divided for soil 
moisture determination, dissolved organic carbon (DOC) 
and  NH4

+–N and  NO3
−–N extraction. The remaining 

soil was air dried, ground and sieved to obtain differ-
ent sizes fractions for subsequent analyses: < 2  mm for 
pH, < 0.85 mm for available phosphorus (AP), < 0.425 mm 
for soil sucrase (S-SC), urease (S-UE), and acid phos-
phatase (S-ACP) activities, and < 0.149 mm for elements 
and soil organic matter (SOM) determination.

Fava beans phenotypes and antioxidant enzyme activity 
determination
Five fava bean plants in each row were carefully exca-
vated during the flowering stage to measure their phe-
notype traits (biomass and height) for estimating their 

growth status. Based on these phenotype traits, fava 
beans were classified into two phenotypic groups: the Big 
group consists of individuals with higher biomass and 
height, and the Little group consists of individuals with 
lower biomass and height. The antioxidant enzyme activ-
ities (superoxide dismutase (SOD), catalase (CAT) and 
peroxidase (POD)) in fava bean tissues (roots, stems, and 
leaves) were determined by using the commercial kits 
(Solarbio Science & Technology Co., Beijing, China).

Soil abiotic properties determination
Soil pH was measured using a pH meter with a soil-to-
water ratio of 1:2.5. Soil moisture was determined by 
calculating the weight loss after oven-drying at 105  °C 
until a constant weight was reached. Dissolved organic 
carbon (DOC),  NH4

+–N and  NO3
−–N were measured as 

described in [27]. Briefly, DOC,  NH4
+–N and  NO3

−–N 
were extracted by 0.1  M KCl, followed by measure-
ment using a TOC analyzer (Multi N/C 3100, Analytik 
Jena, Germany) for DOC, and a continuous flow ana-
lyzer (AA3, SEAL Analytical, Germany) for  NH4⁺–N 
and  NO3⁻–N. Available phosphorus (AP) was extracted 
by 0.5  M  NaHCO3 and determined using the molybde-
num-antimony colourimetric method at a wavelength 
of 700 nm [26]. Soil organic matter (SOM) was analyzed 
by the  K2Cr2O7–H2SO4 oxidation–reduction colorimet-
ric method at a wavelength of 590 nm [28]. Soil sucrase 
(S_SC), soil urease (S_UE) and soil acid phosphatase 
(S_ACP) were determined by using the commercial kits 
(Solarbio Science & Technology Co., Beijing, China).

Soil elements concentrations were determined using 
inductively coupled plasma emission mass spectrometry 
(ICP-MS) following microwave-assisted acid digestion 
[29]. Briefly, all soil samples were ground into fine pow-
der (particle size less than 0.149 mm), and 0.1000 g soil 
of each sample was subjected microwave digestion with 
6 ml  HNO3 and 2 ml HCl for total concentration of soil 
elements (As, B, Co, Cr, Cu, Pb, Sr, Zn, Ni, Cd, Mg, Al, 
Mo, Nd, Mn, Fe) determination by inductively coupled 
plasma emission mass spectrometry (ICP-MS, NexION 
300X, PerkinElmer, USA). These elements had been iden-
tified as the characteristic elements in the dismantling of 
e-waste, and potentially affect crop growth [30–32].

Soil metagenomic sequencing and analysis
Microbial genomic DNA were extracted from rhizos-
phere soils using the Mag-Bind® Soil DNA Kit (Omega 
Bio-tek, Norcross, GA, USA), followed by determination 
of DNA concentration and purity using TBS-380 and 
NanoDrop 2000, respectively. Paired-end sequencing was 
conducted on the DNBSEQ-T7 platform (Majorbio Bio-
Pharm Technology Co., Ltd., Shanghai, China) using the 
DNBSEQ-T7RS Reagent Kit (FCL PE150).
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After quality control, metagenomic sequences were 
assembled into contigs using MEGAHIT [33]. The pre-
dicted open reading frames (ORFs) from each assembled 
contig were performed using Prodigal [34] with a length 
greater than 100  bp, and translated into amino acid 
sequences to perform gene prediction via the NCBI pipe-
line. The retrieved genes were clustered using CD-HIT 
[35] with 90% sequence identity and 90% coverage. The 
longest sequence in each cluster was selected as the rep-
resentative sequence for constructing a non-redundant 
gene catalogue. Representative sequences from the non-
redundant gene catalogue were aligned against the NR 
database (Version 20230830) using DIAMOND (iden-
tity > 0, alignment length > 0, e value < 1e-5) to obtain tax-
onomic annotations. Functional annotation was achieved 
by aligning the same sequences to the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database (Version 
20230830) under the same parameters [36].

The taxonomic and functional profiles of rhizosphere 
microbial communities associated with fava beans of 
different phenotypes were visualized using a circus plot, 
where reads per kilobase per million (RPKM) was used 
to represent gene abundance [37]. Linear discriminant 
analysis effect size (LEfSe) was used to identify microor-
ganism with significantly different abundance between 
the two groups (Big vs Little) of fava beans (LDA > 2, 
P < 0.05), where RPKM was used as gene abundance.

Metabolite profiling and analysis
Non-targeted LC-MS/MS metabolomic analysis of rhizo-
sphere soils was conducted according to the method 
described in a previous study [38]. Briefly, a 50  mg 
of rhizosphere soil was mixed with 400 μL of extrac-
tion solution (methanol:water = 4:1, v/v) containing 
0.02  mg/mL of the internal standard L-2-chlorophe-
nylalanine, along with a 6  mm stainless steel grinding 
bead, in a 2  mL centrifuge tube. The mixture was used 
for metabolite determination. LC–MS/MS analysis was 
carried out using a Thermo UHPLC-Q Exactive HF-X 
system equipped with an ACQUITY HSS T3 column 
(100 mm × 2.1 mm i.d., 1.8 μm; Waters, USA) at Majorbio 
Bio-Pharm Technology Co., Ltd. (Shanghai, China). Fur-
ther details regarding LC–MS/MS instrumental param-
eters are provided in the Supporting Information.

Raw data generated from the UHPLC-MS/MS analysis 
were imported into the Progenesis QI software (Waters 
Corporation, Milford, USA) for metabolomic data pro-
cessing. Metabolic features were annotated by match-
ing their mass spectra to reference spectra in curated 
biochemical databases, based on accurate mass, MS/
MS fragment spectra, and isotope ratio difference. The 
annotated metabolites were subsequently mapped to 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database to retrieve information on their chemical struc-
tures and biological functions. KEGG further classifies 
these metabolites according to their involvements in spe-
cific biological functions and pathways.

Principal component analysis (PCA) was performed 
to assess the overall differences in rhizosphere metabo-
lites between the two groups of fava beans (Big vs Little). 
Significantly different metabolites were identified using 
Orthogonal partial least squares discriminant analysis 
(OPLS-DA), based on the criteria (variable importance 
in the projection (VIP) > 1 and P < 0.05). Differences in 
metabolites expression between the two groups were 
visualized by volcano plots. The significantly differential 
rhizosphere metabolites (DMEs) that could be annotated 
into metabolic pathways by the KEGG database were col-
lected for further analyses (Table. S2).

Linking multi‑omics with soil properties and fava beans 
phenotypes
The workflow of the integrated multi-omics analysis 
in relation to fava bean phenotypes was presented in 
Fig. S2. Significantly correlated differential metabolites 
(SCDMEs) were identified using the Mantel-test (Man-
tel’s P < 0.05). The VIP values and relative abundance of 
these metabolites (SCDMEs) were visualized in bub-
ble plot and heatmaps. Significantly enriched metabolic 
pathways (SEMPs), in which the SCDMEs were involved, 
were identified through enrichment analysis, and path-
ways with P < 0.05 were considered significantly enriched.

Genes involved in the SEMPs were extracted to con-
struct a new functional gene set. This gene set was then 
aligned to the NR database to identify the rhizosphere 
microbial genera (MGs) associated with the SEMPs. Sig-
nificantly different microbial genera (SDMGs) between 
the two groups (Big vs. Little) were identified using a 
Wilcoxon rank-sum test with false discovery rate (FDR) 
correction, where the RPKM was used as genes abun-
dance. Statistically significant differences were defined 
at P < 0.05. Among the SDMGs, microbial genera signifi-
cantly correlated with fava beans phenotypes (SCDMGs) 
were selected using the Mantel test (Mantel’s P < 0.05).

Spearman correlation analysis was performed to assess 
the associations among fava beans phenotypes, rhizos-
phere soil properties, significantly correlated differential 
metabolites (SCDMEs), and significantly correlated dif-
ferential microbial genera (SCDMGs). Correlations with 
P < 0.05 were considered statistically significant.

Structural equation modeling (SEM)
SEM was used to explore the mechanisms underlying 
the differences in the phenotypes of fava beans, regard-
ing to the rhizosphere soil elements (As, B, Co, Cr, Cu, 
Pb, Sr, Zn, Ni, Cd), soil pH, rhizosphere differential soil 
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microorganisms (11 SCDMGs) and metabolites (21 
SCDMEs). All variables were standardized using Z trans-
formation (mean = 0, standard deviation = 1) to improve 
data normality. Dimensionality reduction of the differ-
ential indices was performed via principal component 
analysis (PCA), with the first principal component rep-
resenting the majority of variance. Pairwise correlations 
among these variables were computed using the Mantel 
test (R packages: Ecodist) [39]. The resulting covariance 
matrix was imported into AMOS 17.0 (SPSS, Chicago, 
IL, USA) for SEM construction and analysis. Maximum 
likelihood estimation was used to fit the model to the 
covariance structure. A priori and theoretical modeling 
was adjusted according to the criterion of low chi-square 
(χ2), non-significant probability level (P > 0.05), good-
ness of fit index (GFI > 0.90), Akaike information crite-
rion (AIC) and root mean square error of approximation 
(RMSEA < 0.05) to ensure the final model was well fitted 
[40].

Statistical analysis
Statistical analyses were performed on the R platform. A 
two-tailed Wilcoxon rank-sum test was used to assess the 
difference in each variable between the two groups (Big 
vs Little) of fava beans. Random Forest analysis (R pack-
age: rfPermute) [41] was used to identify the key factors 
that explaining variance in biomass and height of fava 
beans. The importance of each variable was computed for 
the average of 5000 trees and determined by an increase 
in node purity (IncNodePurity). Mantel-test (R package: 
Ecodist) [39] was applied to explore the potential associa-
tions between the phenotypes of fava beans and the sig-
nificantly differential metabolites (SDMEs) and microbial 
genera (SDMGs). Spearman correlation analysis (R pack-
ages: psych, pheatmap) [42, 43] was employed to identify 
the relationship between the phenotypes of fava beans 
and the significantly correlated rhizosphere microbial 
metabolites (SCDMEGs), microbial genera (SCDMGs) 
and soil properties.

Results
Differences in fava beans growth between the two groups
Significant differences in biomass and height were 
detected between the two groups of fava beans (Big vs 
Little). As shown in Fig.  1, the biomass of fava beans 
in the Big group (with an average of 238.0  g/plant) was 
significantly greater than that in the Little group (with 
an average of 182.0  g/plant) (Fig.  1(1)A; P < 0.05), and 
the height of fava beans in the Big group (with an aver-
age of 86.0 cm/plant) was also significantly greater than 
that in the Little group (with an average of 66.0 cm/plant) 
(Fig. 1(1)B; P < 0.05). However, there were no significant 

differences in the activities of enzymes (including POD, 
SOD and CAT) of fava beans tissues between the two 
groups (Fig. S3; P > 0.05).

Differences in rhizosphere soil properties between the two 
groups
Significant differences in rhizosphere soil pH and ele-
mental concentrations were observed between the two 
groups. Soil pH was significantly lower in the Big group 
(with average value of 5.8) compared to the Little group 
(with average value of 6.3) (Fig. 1(2)A; P < 0.05). Soil total 
concentrations of As, B, Co, Cr, Cu, Pb, Sr, Zn, Ni, and 
Cd were significantly lower in the Big group (Fig.  1(2); 
P < 0.05). In contrast, no significant differences were 
detected between the two groups for soil total concen-
trations of Mg, Al, Mo, Nd, Mn and Fe, as well as for 
soil enzyme activities (S_ACP, S_UE, S_SC),  NH4

+–N, 
 NO3

−–N, AP, SOM, DOC, and moisture content (Fig. S4; 
P > 0.05).

Random Forest analysis identified soil total concentra-
tions of Mo, Cu and Cd as key factors significantly asso-
ciating with fava beans biomass (Fig.  1(3)A; P < 0.05). 
Additionally, soil pH and total concentrations of Zn, Ni, 
Cr, Co, B and As were identified as major predictors for 
fava beans height (Fig. 1(3)B; P < 0.05).

Differences in rhizosphere microbial communities 
and functions between the two groups
The taxonomic composition of rhizosphere soil micro-
organisms was mainly abundant in Pseudomonadota, 
Actinomycetota, Acidobacteriota, Chloroflexota, and 
Candidatus_Rokubacteria at the phylum level, col-
lectively accounting for over 60% of the total relative 
abundance of microbial communities (Fig. S5(A)). The 
functional pathways mainly associated with biosynthesis 
of secondary metabolites and microbial metabolism in 
diverse environments, and two-component system and 
carbon metabolism, etc., which account for more than 
30% of the total relative abundance (Fig. S5B).

The rhizosphere microorganisms with differential 
abundances between the two groups were primarily iden-
tified among eukaryotes (Fig. 2), 22 eukaryotic taxa were 
significant differently enriched between the two groups 
(Fig.  2A). The relative abundances of the orders Diver-
sisporales and Magnaporthales were significantly higher 
in the Big group, whereas the orders Coniochaetales, 
Spizellomycetales and Peridiniales were more abundant 
in the Little group (Fig.  2A). For archaea, 3 taxa exhib-
ited differences in their relative abundance between the 
two groups (Fig.  2B). The relative abundances of the 
class Archaeoglobi, the order Natrialbales, and the fam-
ily Natrialbaceae were significantly higher in the Little 
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group (Fig. 2B). Regarding viruses, a total of 9 taxa were 
enriched in terms of relative abundance between the two 
groups (Fig. 2C). In particular, the relative abundance of 
the family Mesyanzhinovviridae was significantly higher 
in the Big group (Fig. 2C). For bacteria, 9 bacterial taxa 
displayed significantly differences in relative abundance 
between the two groups (Fig. 2D). The class Flavobacte-
riia, the orders Flavobacteriales and Nevskiales, and the 
family Flavobacteriaceae exhibited significantly higher 
relative abundance in the Little group (Fig. 2D). A total of 
8 microbial functions significantly differed between the 
two groups (Fig. S6).

Differences in rhizosphere metabolites between the two 
groups
Overall, most of the differential metabolites exhibited 
higher relative abundances in the Big group. According to 
the functional classification at KEGG level 2, the major-
ity of these metabolites were associated with metabolic 
pathways, including biosynthesis of other secondary 

metabolites, amino acid metabolism, chemical struc-
ture transformation maps, lipid metabolism, and xeno-
biotics biodegradation and metabolism (Fig.  3A). PCA 
revealed distinct separation of rhizosphere metabolites 
profiles between the two groups (Fig.  3B). Compared 
to the Little group, a total of 462 rhizosphere metabo-
lites were significantly upregulated, and 35 were signifi-
cantly downregulated in the Big group (Fig. 3C; P < 0.05). 
Among these metabolites, 88 differential metabolites 
(DMEs) were successfully annotated to KEGG metabolic 
pathways. Of these, 80 differential metabolites includ-
ing choline, flavin mononucleotide, coniferyl alcohol, 
Alpha-d-glucose, L-aspartic acid, L-Proline, thymine and 
etc. were upregulated in the Big group (Fig. S7; Table S2; 
P < 0.05). In contrast, 8 differential metabolites including 
(S)-10,16-Dihydroxyhexadecanoic acid, galactinol, cel-
lobiose, dihydrolipoic acid, etc. were upregulated in the 
Little group (Fig. S7; Table S2; P < 0.05).

Fig. 1 Fava beans phenotypes, rhizosphere elemental concentrations and their statistical associations. (1) Biomass (A) and Height (B) of fava beans. 
(2) Soil pH (A) and total concentrations of As (B), B (C), Co (D), Cr (E), Cu (F), Pb (G), Sr (H), Zn (I), Ni (J), Cd (K). (3) Random Forest analysis identifying 
key soil factors associated with fava bean biomass (A) and height (B). Significant difference of each variable between the two groups (Big vs Little) 
was measured by Wilcoxon rank-sum test analysis. Asterisks indicate significance: P < 0.05 (*); P < 0.01 (**); P < 0.001 (***). The Big group consists 
of individuals with higher biomass and height, and the Little group consists of individuals with lower biomass and height
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Associations among soil properties, phenotypes, 
rhizosphere metabolites and metagenome of fava beans
Among the 88 differential metabolites (DMEs), a total of 
21 metabolites (SCDMEs) were identified as significantly 
correlated with the phenotypes of fava beans based on 
Mantel-test analysis (Fig. S8; Table. S3; P < 0.05). Of these 
SCDMEs, 20 metabolites, including flavin mononucleo-
tide, jasmonic acid, L-aspartic acid, Alpha-d-glucose, 
traumatic acid, etc., were significantly enriched in the 
Big group, whereas only (S)-10,16-Dihydroxyhexadeca-
noic acid (C08285) was significantly depleted in the Big 
group (Fig. 4A; P < 0.05). Functional enrichment analysis 
revealed that SCDMEs were significantly enriched in 15 
metabolic pathways (SEMPs), including biosynthesis of 
plant secondary metabolites, biosynthesis of phenylpro-
panoids, pyrimidine metabolism, alpha-Linolenic acid 
metabolism, purine metabolism, etc. (Fig. 4B; P < 0.05).

A total of 46 microbial genera (SDMGs) involving 
in the 15 significantly enriched metabolic pathways 
(SEMPs) were tracked and found to significantly differ 
in relative abundance between the two groups. Among 

the SDMGs, 28 genera, including Acutalibacter, Psych-
romonas, Listeria, Thermostaphylospora, Frigoriglobus 
and others were enriched in the Big group, while 18 gen-
era, such as Mycolicibacillus, Sphingobium, Mameliella 
and others, were enriched in the Little group (Fig. S9; 
Table. S4; P < 0.05). Furthermore, 11 microbial genera 
(SCDMGs), including Psychromonas, Listeria, Pepto-
streptococcus, Thioploca, Acutalibacter, Caldibacillus, 
Mycolicibacillus, Thermostaphylospora, Frigoriglobus, 
Mameliella, and Sphingobium, were found to be signifi-
cantly correlated with the fava bean phenotypes based on 
Mantel-test analysis (Fig. S10; Table. S5; P < 0.05).

SCDMEs and SCDMGs were strongly correlated with 
fava beans phenotypes and with the soil properties that 
previously identified as key factors through Random For-
est analysis (Fig. 5A, B; P < 0.05). Among the SCDMEs, 20 
metabolites, including flavin mononucleotide, jasmonic 
acid, L-aspartic acid, alpha-d-glucose, traumatic acid, 
etc., were positively related with biomass and height of 
fava beans, and negatively related to the soil properties 

Fig. 2 Rhizosphere soil microbial taxa that susceptible to the two groups (Big vs Little) revealed by LEfSe analysis. The Big group consists 
of individuals with higher biomass and height, and the Little group consists of individuals with lower biomass and height. Differentially enriched 
taxa in eukaryotes (A), archaea (B), viruses (C), and bacteria (D). Colors indicate enrichment in either the Big (red) or Little (blue) group. The circular 
cladogram represents taxonomic levels from phylum to genus (inner to outer rings)
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(Fig.  5A). Notably, soil total concentration of B was the 
only soil property significantly correlated with all of the 
SCDMEs (Fig.  5A; P < 0.05). Regarding the rhizosphere 
microbial genera, Psychromonas, Listeria, Peptostrep-
tococcus, Thioploca, Acutalibacter, Caldibacillus, Ther-
mostaphylospora, and Frigoriglobus showed positive 
correlations with fava beans biomass and height, but 
negative correlations with the soil properties. In contrast, 
Mameliella, Sphingobium, and Mycolicibacillus exhibited 
the opposite pattern, being positively correlated with the 
soil properties and negatively correlated with fava beans 
biomass and height (Fig. 5B).

SEM revealed that the differential rhizosphere soil 
elements significantly affected fava beans phenotypes 
through alterations in the differential microbial taxa 
and metabolites in rhizosphere. In detail, these ele-
ments significantly affected fava beans phenotypes 
via soil pH, which was significantly driven by the dif-
ferential microbial taxa (Fig.  6A). Standardized total 

effects analysis further demonstrated that the differ-
ential microbial taxa made the greatest contribution to 
the variance of fava beans phenotypes (Fig. 6B). These 
microbial taxa were significantly shaped by the differ-
ential soil elements, which altered their relative abun-
dance. Through their biogeochemical activities, these 
microorganisms modulated soil pH, subsequently 
affected the relative abundance of metabolites, and ulti-
mately influenced fava beans growth.

Discussion
In this study, small-scale (30 cm) heterogeneity of soil 
properties including soil total As, B, Cd, Co, Cr, Cu, 
Mo, Ni, Zn and pH triggered significant differences in 
phenotypes of fava beans through altering the rhizos-
phere soil microbiome and metabolites, which confirm 
our hypothesis. These findings highlight that small-
scale agricultural soil heterogeneity deserves greater 

Fig. 3 Rhizosphere metabolites in the two groups (Big vs Little) of fava beans phenotypes. The Big group consists of individuals with higher 
biomass and height, and the Little group consists of individuals with lower biomass and height. A: Functional classification of identified metabolites 
based on KEGG Level 2 pathways. B: Principal component analysis (PCA) of rhizosphere metabolites between the two groups based on Bray–Curtis 
distance. C: Volcano plot showing significantly upregulated metabolites (red), downregulated metabolites (blue), and non-significantly changed 
metabolites (gray). In A, the x-axis indicates the number of identified metabolites per pathway; the y-axis represents KEGG classifications
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attention. Field-level interventions such as soil testing 
and formula planting may help reduce spatial variability 
and, in turn, optimize crop yield.

Small‑scale soil heterogeneity affected fava beans growth
Soil heterogeneity is widespread phenomenon occurring 
across a broad range of spatial scales, from microhabitats 
to global distribution [6, 11]. In agricultural systems, field 
management practices, including ploughing, irrigation, 
fertilization, as well as geographical environment filter-
ing can contribute to soil heterogeneity [12, 44]. Numer-
ous studies have demonstrated that soil heterogeneity 
encompasses variations in nutrient availability and envi-
ronmental stress, which could influence plant growth [7, 
45, 46]. In our study, we observed notable differences in 
fava beans growth between the two adjacent rows sepa-
rated by only 30  cm, suggesting that even small-scale 
heterogeneity could have measurable effects on crop 
performance.

Furthermore, we determined that soil pH and several 
concentrations of elements differed between the two 

groups, and these variables were also predicted as key 
drivers of fava beans growth by Random Forest analy-
sis. Soil pH is widely recognized as a critical factor in 
plant growth, as it influences nutrient availability and 
biogeochemical cycling of soil elements [47, 48]. Previ-
ous studies have shown that increasing pH promoted the 
tea tree growth [49] and potato yield [14]. However, our 
results revealed the opposite phenomenon, the Big group 
of fava beans presented a relatively lower soil pH. As a 
leguminous species, fava beans are capable of biologi-
cal nitrogen fixation, and larger fava beans may possess 
higher nitrogen-faxing capacity, as evidenced by ele-
vated  NH4

+–N concentrations in their rhizosphere soils 
(Fig. S4). The conversion of atmospheric nitrogen into 
ammonia, followed by ammonium ion accumulation and 
nitrification, is known to contribute to rhizosphere acidi-
fication, potentially explaining the observed decrease in 
soil pH in the Big group [50].

In our study, fava beans grown in soils with elevated 
concentration of certain elements exhibited reduced 
biomass and height. Several studies have reported the 

Fig. 4 Differential rhizosphere metabolites and their associated metabolic pathways between the two groups (Big vs Little) of fava beans 
phenotypes. The Big group consists of individuals with higher biomass and height, and the Little group consists of individuals with lower biomass 
and height. A: Differential metabolites identified by OPLS-DA, with variable importance in projection (VIP) values used to detect the differential 
metabolites between the two groups. The relative abundance of metabolites was in proportion to the heatmap gradient. B: KEGG metabolic 
pathways that differential metabolites enriched in
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inhibitory effects of soil Cd, Cr and As on plant growth 
[51–53]. In particular, Cd and As in soil have been shown 
to disrupt photosynthesis and enzyme activity in rice, 
impair energy production and consequently lead to inhib-
ited growth and lower yields [54]. Although Zn, Mo, Co, 
Cu, B and Ni are generally considered essential micro-
nutrients for plant growth [55–57], their beneficial or 
inhibitory effects depend on their concentrations in soil 
and plant species [58, 59]. For instance, a previous study 
reported that Cu significantly reduced photosynthetic 
efficiency and inhibited rice growth when it exceeded 
200 mg/kg in soil [60]. The quantitative requirement for 
B varies substantially across plant species [56], and simi-
lar dose-dependent and species-specific effects have also 
been observed for Zn, Mo, Co, and Ni with respect to 
crop growth [61–63].

Soil heterogeneity altered rhizosphere microorganisms
Previous studies have shown that soil microbial com-
munity composition can be influenced by environmental 
stress, plant cultivation, and soil physicochemical prop-
erties [64, 65]. Among these microorganisms, soil fungi 
are particularly sensitive to environmental stress and 
play essential roles in regulating plant growth [66]. In our 
study, LEfSe analysis revealed that significant shifts in the 

rhizosphere soil microbial community were predomi-
nantly observed within the eukaryotic taxa. Compared 
with bacteria, eukaryotic microorganisms are generally 
more responsive to environmental changes, due to their 
larger size and slower reproduction rates [27]. The com-
position of microbial communities could be specialized 
by environmental filtering (e.g., temperature, nutrient 
availability, and heavy metal contamination) [67]. In par-
ticular, the eukaryotic genus Gigaspora and the Bacterial 
genus Skermanella were enriched in the rhizosphere soil 
of the Big group. Both genera have been reported to be 
sensitive to soil Cd [68, 69]. The beneficial effects of soil 
microbial communities on plant growth, health, and crop 
yield and quality have also been well documented [70]. 
For instance, inoculation of Cucumis sativus L. seedlings 
with Diversispora has been shown to increase the accu-
mulation of essential micronutrients, such as N, P, K and 
Ca, in cucumber roots [71].

Soil rhizosphere metabolites associated with fava beans 
growth
Rhizosphere soil metabolites and their associated met-
abolic pathways, which are potentially linked to fava 
beans growth, significantly differed between the two 
groups. Notably, purines, pyrimidines, and nucleotide 

Fig. 5 Spearman correlation analysis between the soil properties, the phenotypes of fava beans, and the differential metabolites (A) and microbial 
genera (B). Statistically significant correlation was considered at P < 0.05. Asterisks indicate significance: P < 0.05 (*); P < 0.01 (**); P < 0.001 (***). 
Correlation coefficient was in proportion to the heatmap gradient
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metabolism were significantly enriched in the rhizos-
phere soil of the Big group. These enrichments suggest 
favorable growth condition, as purines and pyrimidines 
are the major building blocks of nucleic acid synthe-
sis and serve as precursors for numerous primary and 
secondary metabolites [72]. Moreover, plant secondary 
metabolites could help plants cope with various abiotic 
stresses [73, 74]. For example, coniferyl alcohol and 
resveratrol are involved in the biosynthesis of phenyl-
propanoids. Coniferyl alcohol is one of the three pri-
mary precursors for lignin biosynthesis [75], which is 
essential for water and solute transport in plants [76]. 

Jasmonic acid participates in the biosynthesis of vari-
ous plant secondary metabolites, and had been shown 
to regulate plant growth and response to environmen-
tal stress [77, 78]. Moreover, amino acid synthesis is 
crucial for plant growth and energy supply [79, 80]. 
L-aspartic acid is a precursor for the synthesis of essen-
tial amino acids, such as lysine and threonine [81]. It 
also plays a role in the biosynthesis of plant hormones, 
which are key regulators of physiological and molecu-
lar responses, transport, and metabolism, etc., thereby 
promoting plant survival under unfavourable condi-
tions [82, 83]. A previous study demonstrated that 
L-aspartic acid addition could enhance poplar trees 
growth by increasing photosynthetic efficiency and 
hormone levels [84].

Multi‑omics revealed mechanisms for fava beans growth 
in response to soil heterogeneity
Spatial heterogeneity in soil pollutants has been 
shown to alter the soil microbiome [10, 85] and influ-
ence plants growth by modulating the rhizosphere soil 
microbial structure and metabolic profile [22, 86]. For 
example, a previous study showed that the excessive Cd 
in soil altered the metabolite profile and inhibited the 
growth of Eclipta alba (L.) [87]. In this study, elemen-
tal heterogeneity within 30 cm led to distinct rhizos-
phere metabolite profiles and microbial taxa between 
the two fava bean groups, which significantly impacted 
fava beans growth, as the SEM quantitively depicted. 
Most of the metabolites showed higher relative abun-
dances in the Big group, and their metabolic path-
ways were found to mediate plant growth and stress 
responses. A previous study reported that Cu addi-
tion reduced purine metabolism in rice rhizosphere 
soil, disrupted nucleotide metabolism and ultimately 
inhibited plant growth [20]. In our research, metabo-
lites such as resveratrol, jasmonic acid, and coniferyl 
alcohol were positively correlated with fava bean phe-
notypes and negatively correlated with the differen-
tial soil elements. Resveratrol was shown to alleviate 
photosynthesis reduction and boron accumulation in 
Capsicum annuum L. under excessive boron expo-
sure [86]. Jasmonic acid could mitigate Cd-toxicity in 
chickpea plants through limiting Cd uptake and man-
aging oxidative stress [88]. These findings suggest that 
pollutant-induced growth inhibition in fava beans is, 
at least in part, mediated through alterations in rhizo-
sphere metabolites. Furthermore, the combined analy-
ses of metagenomics and metabolomics revealed that 
fava beans could also recruit specific microbial taxa 
to the rhizosphere. These differential microbial taxa 
potentially promote plant growth and enhance stress 

Fig. 6 Potential regulatory mechanisms linking soil properties 
heterogeneity to fava beans phenotypes. A: Structural equation 
model (SEM) was constructed based on variables of rhizosphere soil 
elements, soil pH, relative abundance of metabolites and microbial 
genera, and fava beans phenotypes. The degree of path coefficient 
is proportional to the width of the arrow line, and the solid line means 
that a significant correlation was observed between the two variables 
(P < 0.05). The r2 value represents the rate of variance explained 
for each variable. B: The standardized total effects (direct plus indirect 
effects) for each influential variable calculated by the SEM. Low 
chi-square, non-significant probability level (P > 0.05), high goodness 
of fit index (GFI > 0.90), low Akaike information criterion (AIC) and low 
root mean square error of approximation (RMSEA < 0.05) indicated 
that our data well matched the hypothesis model
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resilience through metabolic pathways in which key 
differential metabolites are enriched [89]. For instance, 
Thermostaphylospora was shown to promote the migra-
tion and transformation of As and reduce the toxicity 
of As [90].

Conclusions
In this study, small-scale soil heterogeneity was found 
to significantly influence fava bean growth, as evi-
denced by the distinct phenotypes observed in two 
adjacent rows under field conditions. Higher concen-
trations of elements (As, B, Cd, Co, Cr, Cu, Mo, Ni and 
Zn) and pH level were detected in the rhizosphere soil 
of the Little group, which implied the inhibitory effects 
on fava beans growth. Metagenomic analysis illus-
trated that soil heterogeneity differentiated rhizosphere 
microorganisms, with 11 differentially abundant micro-
bial genera (SCDMGs) involving in 15 key metabolic 
pathways (SEMPs). Metabolomics demonstrated that 
these metabolic pathways were beneficial for fava beans 
growth and resistant to environmental stress through 
the 21 differential metabolites (SCDMEs) such as 
coniferyl alcohol, jasmonic acid, resveratrol, L-aspar-
tic acid, etc. Overall, our findings highlight that even 
small-scale elemental heterogeneity in agricultural soils 
can markedly affect plant performance through rhizo-
sphere plant–microbe–metabolite interactions. Our 
research proposed that more attention should be given 
to study the related consequences and mechanisms of 
small-scale heterogeneity in farmland to increase food 
production. Future research could investigate soil and 
plant properties at broader temporal scales to provide 
more precise observations and evidence.
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