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Abstract 

Background Plant and soil microbiomes can interfere with pathogen life cycles, but their influence on disease epide-
miology remains understudied. Here, we analyzed the relationships between plant and soil microbiomes and long-
term epidemiological records of grapevine downy mildew, a major disease caused by the oomycete Plasmopara 
viticola.

Results We found that certain microbial taxa were consistently more abundant in plots with lower disease incidence 
and severity and that the microbial community composition could predict disease incidence and severity. Microbial 
diversity was not strongly linked to epidemiological records, suggesting that disease incidence and severity is more 
related to the abundance of specific microbial taxa. These key taxa were identified in the topsoil, where the patho-
gen’s oospores overwinter, and in the phyllosphere, where zoospores infect leaves. By contrast, the leaf endosphere, 
where the pathogen’s mycelium develops, contained few taxa of interest. Surprisingly, the soil microbiota was a better 
predictor of disease incidence and severity than the leaf microbiota, suggesting that the soil microbiome could be 
a key indicator of the dynamics of this primarily aerial disease.

Conclusion Our study integrates long-term epidemiological data with microbiome profiles of healthy plants 
to reveal fungi and bacteria relevant for the biocontrol of grapevine downy mildew. The resulting database provides 
a valuable resource for designing microbial consortia with potential biocontrol activity. The framework can be applied 
to other crop systems to guide the development of biocontrol strategies and reduce pesticide use in agriculture.
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Background
Chemical pesticides are the most commonly used 
method for protecting crops against pathogens [1]. 
However, legislation is increasingly restricting their 
use because of their significant negative impacts on the 
environment and human health [2–4]. In this context, 
microbial biocontrol strategies are promising alterna-
tives for enhancing plant protection against pests and 
diseases while reducing the use of chemical products 
[5, 6]. These strategies involve the use of microorgan-
isms or their byproducts to control pests and diseases 
through direct interactions such as antibiosis, preda-
tion, parasitism, and competition, or through indirect 
interactions such as the modulation of plant immu-
nity [6, 7]. Harnessing the diversity of plant micro-
biota could also be an option, as several studies have 
established a link between ecosystem functioning and 
microbial diversity [8–10], validating the ’Biodiversity-
Ecosystem Functioning’ (BEF) theory [11]. The chal-
lenge lies in identifying the combination of microbial 
taxa involved in plant protection, among the multitude 
of taxa that constitute the plant microbiota.

Identifying protective microbial taxa is crucial for dis-
eases that require frequent fungicide applications, as it 
can lead to significant reductions in pesticide use. Grape-
vine downy mildew, caused by the oomycete Plasmopara 
viticola [12, 13], is one such disease [13, 14]. Plasmopara 
viticola (Berk. & M.A. Curtis) Berl. & De Toni is a bio-
trophic and obligate parasite of grapevine [15] originat-
ing from North America [12, 16]. It was introduced to 
Europe in the mid-nineteenth century, where it destroyed 
a large proportion of French vineyards due to the high 
susceptibility of Vitis vinifera [17, 18]. This disease is now 
reported in most wine-producing regions of the world 
[16, 19] and has a significant economic impact [19–21]. 
In temperate climates, P. viticola survives the winter 
through sexual reproduction, producing oospores in 
grapevine leaves during the fall. The oospores then over-
winter in the leaf litter and soil. In the following spring, 
the oospores germinate to produce macrosporangia con-
taining zoospores, which are dispersed by wind and rain 
to infect grapevine leaves and other receptive green tis-
sues. Primary infections occur when zoospores, origi-
nating from oospores (i.e., primary inoculum), enter leaf 
tissues through stomata. Secondary infection cycles are 
initiated by the production of sporangia on the lower 
surface of infected leaves by asexual reproduction. The 
sporangia release zoospores (i.e., secondary inoculum), 
which initiates a new cycle of infection [12, 13, 22]. With-
out effective disease control measures, favorable weather 
conditions can trigger multiple cycles of primary and sec-
ondary infections within the growing season, potentially 
leading to complete crop loss [12].

Grapevines naturally host a diverse microbiota, includ-
ing leaf epiphytes, which develop on the leaf surface in 
the microbial habitat known as the phyllosphere [23, 24], 
and leaf endophytes, which inhabit the internal leaf tis-
sues in the microbial habitat known as the endosphere 
[25]. Numerous microorganisms isolated from these two 
habitats have been tested, as single strains [12, 13, 21, 26–
28] or in combination [23], for their antagonistic activ-
ity against downy mildew, and some have emerged as 
promising candidates for biocontrol of the asexual stage 
of P. viticola. These microorganisms serve as a primary 
line of defense by inhibiting zoospore motility, adhesion, 
and penetration through antibiosis [29–33]. They can 
also reduce sporangia production and sexual reproduc-
tion by interacting directly with the pathogen’s mycelium 
through hyperparasitism and antibiosis [34–36]. Finally, 
they can inhibit sporangiophore formation and germi-
nation through hyperparasitism and antibiosis [36–41]. 
Despite these promising results, only one bacterial strain, 
Bacillus amyloliquefaciens FZB24, has been formally reg-
istered in France for downy mildew biocontrol [42].

To date, limited research has explored the relation-
ship between the soil microbiome and downy mildew 
oospores. A laboratory study demonstrated the antago-
nistic activity of Acremonium byssoides against P. viti-
cola oospores through hyperparasitism and antibiosis 
[43]. Similarly, bacteria, fungi, and yeasts collected from 
abandoned vineyards effectively inhibited the germina-
tion of oospores overwintering under natural conditions 
[44]. Additional research on other oomycete species has 
shown that various bacterial and fungal taxa from natural 
soils can parasitize oospores of several oomycete species, 
including Pythium sp., Phytophthora sp., and Aphanomy-
ces euteiches [45–47].

In this study, our goal was to uncover microbial consor-
tia with the potential to protect vineyards from P. viticola 
and ultimately reduce reliance on chemical fungicides. 
We integrated microbial community data with long-term 
epidemiological data, an emerging field known as micro-
biome epidemiology [48]. We also evaluated the predic-
tive power of microbial data in epidemiology, which 
remains an underexplored aspect in the context of plant 
disease management [49]. We tested four hypotheses: 
(1) the diversity of leaf and soil microbial communities is 
higher in plots with low disease severity and incidence; 
(2) plots with low disease severity and incidence harbor 
a greater abundance of specific microbial taxa that are 
hypothesised to play a role in pathogen regulation; (3) 
downy mildew severity and incidence can be predicted 
from microbiota data; and (4) the leaf microbiota is a bet-
ter predictor of disease severity and incidence compared 
to the soil microbiota, as the symptoms appear on the 
aerial plant parts.
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Materials and methods
To test these hypotheses, a two-year leaf and soil sam-
pling campaign was conducted in 14 vineyard plots 
in the Bordeaux region (Nouvelle-Aquitaine, France). 
These plots, selected based  on long-term epidemio-
logical records, comprised seven pairs with contrasting 
downy mildew incidence and severity. Sampling targeted 
young emerging leaves (at the phenological stage of 2–3 
spread leaves) and topsoil (upper 5 cm). This study was 
conducted in the spring, at the beginning of the growing 
season, to identify the protective microbiota likely to be 
present on leaves during colonization by early P. viticola 
zoospores, as well as the microbiota likely to be in con-
tact with germinating oospores in the soil.

Selection of study sites based on epidemiological records
The study sites were selected based on epidemiological 
records provided by the Institut Français de la Vigne et 
du Vin (IFV) using a network of 1200 Untreated Controls 
(hereafter referred to as UCs, Fig. S1) monitored since 
2002. Untreated Controls are generally composed of 2*5 
vines in staggered rows that do not receive any fungicide 
treatment. The UC can either remain in the same location 
over the years or be moved each year, i.e., different vines 
can be selected as UCs. The UC can be located on the 
edge or in the center of the plot, depending on the region 
and the grower’s preference. The incidence and severity 
of downy mildew attacks on vine leaves and bunches are 
observed weekly during the growing season. Leaf attack 
incidence is defined as the number of symptomatic leaves 
divided by the total number of leaves observed [50]. The 
severity of leaf attack is defined as the sum of the per-
centage of symptomatic leaf area divided by the total 
number of leaves observed [50]. Similar definitions are 
used for bunches. They are carried out by vine growers 
or IFV technicians, and are visual estimates expressed as 
percentages (0–100%)[50].

Based on these epidemiological records (downloaded 
from[51]), we selected pairs of vineyard plots that con-
trasted in incidence and severity of downy mildew infec-
tion, but were as similar as possible in terms of genetic 
material, geographic location, and management type. 
We used 5 criteria to select pairs of plots. To belong to 
the same pair, plots must be planted with the same grape 
variety (Criterion 1—Same Variety), and their geographi-
cal distance must not exceed 10 km (Criterion 2—Prox-
imity). The type of management (organic, conventional or 
biodynamic) must be the same (Criteria 3—Same Man-
agement). In addition, the UCs within the two plots must 
have been monitored by IFV for at least 4 common years 
(Criteria 4—Common Records), including at least one 
recent year (i.e., 2020 or 2021 for the 2022 sampling cam-
paign and 2021 or 2022 for the 2023 sampling campaign). 

Finally, the epidemiological records must be contrasted 
(Criterion 5—Contrasted Epidemiology). This means that 
the area under the disease progress curve (AUDPC) of 
one of the two plots must be higher for the 4 epidemio-
logical variables measured by IFV (severity of symptoms 
on leaves, incidence of symptoms on leaves, severity 
of symptoms on bunches, incidence of symptoms on 
bunches) in at least 80% of the years of common epide-
miological surveillance.

Within each pair of plots, the plot with the highest dis-
ease incidence and severity was considered a plot with 
high downy mildew incidence and severity, while the 
plot with the lowest disease incidence and severity was 
considered a plot with low downy mildew incidence and 
severity. The plot selection procedure was applied twice. 
To select plots to be sampled in 2022, we used epidemio-
logical data collected between 2002 and 2021. Then, epi-
demiological data collected between 2002 and 2022 were 
used to select plots to be sampled in 2023.

Sampling design
Two sampling campaigns were conducted. The first cam-
paign took place from April 18 to May 2, 2022 and the 
second campaign took place from April 11 to April 26, 
2023. Both campaigns took place at the phenological 
stage of 2–3 spread leaves, prior to the application of any 
fungicide treatments.

In the 2022 campaign, samples of young leaves and top-
soil were collected from four areas within each plot: the 
center of the plot (CEN), the edge of the plot (EDG), and 
the untreated controls (UCs) used by the IFV to monitor 
disease dynamics in 2021 and 2022 (UC1 and UC2). In 
the 2023 campaign, samples of young leaves and topsoil 
were collected only from the center of the plot (CEN). 
Both the CEN and EDG areas received fungicide treat-
ments the year before sampling. By contrast, UC1 did 
not receive fungicide treatments the year before sam-
pling. It may or may not be located at the edge of the plot, 
depending on the grower’s choice. The within-plot loca-
tion and fungicide treatments the year before sampling 
were variable for UC2. The edge of the plot (EDG) was 
selected to be as far away from UC1 and UC2 as possible 
to capture within-plot variability.

Within each sampling area, four adjacent vines from 
the same row were selected. These vines were repre-
sentative of the age and general condition of the plot. 
From each vine, six leaves distributed across the entire 
plant were collected and pooled into a single compos-
ite sample (Supplementary Fig. S2). For soil sampling, 
three 20 × 20  cm quadrats were defined at a distance of 
20 cm from the trunk of each vine (Supplementary Fig. 
S2). Two quadrats were directly under the row of vines, 
and one was in the interrow space. The top 5 cm of soil 
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from each quadrat was collected, mixed, and placed into 
a bag to form a composite sample. Litter and grasses, 
when present, were collected along with the topsoil and 
later removed during sieving if they did not pass through, 
while materials that passed through were retained.

All the samples were collected using surgical gloves and 
disinfected tools (scissors, shovels, trowels, picks). Before 
sampling a new plot or a new area within the plot, gloves 
were changed and tools were disinfected with bleach 
(3.6% chlorine content) and 70% ethanol. The samples 
were placed in sterile plastic bags (NASCO™, Whirl–
Pak®, USA) and kept on ice in a cooler. The samples were 
brought back to the laboratory on the same day. In the 
laboratory, the samples were stored at 4 °C until process-
ing. Leaves were processed the following day, and the 
soils were processed the following week.

Sample processing
The day after sample collection, the leaves were processed 
to separate the epiphytic microbiota (inhabiting the phyl-
losphere) from the endophytic microbiota (inhabiting 
the endosphere) under a Class II Biosafety Cabinet. To 
isolate epiphytes, each collection plastic bag was sup-
plemented with 50  mL of sterile leaf washing buffer 
(0.9% NaCl, 0.01% Tween 80) (MilliporeSigma™, Calbio-
chem™, PBS-TWEEN™ Tablets, USA) and incubated on 
an orbital shaker at 150 rpm for 1 h. The buffer was then 
centrifuged (5525 × g, 4 °C) for 20 min into 50 mL tubes 
(Corning Inc., Falcon® Tubes, USA). After the superna-
tant was removed, the remaining 2 mL, including the pel-
let, was transferred to a 2 mL tube and centrifuged again 
(14,000 rpm, 4 °C) for 20 min. The supernatant was dis-
carded, and the pellet was stored at -80 °C.

For endophyte collection, washed leaves were surface 
sterilized by immersion in 10% calcium hypochlorite 
solution for 10 min, rinsed in two sterile water baths for 
1 min each, dried by placement on sterile filter paper for 
a few minutes, and transferred to 2  mL tubes with two 
sterilized 5 mm diameter chromium steel balls. The sur-
face-sterilized leaves were then freeze-dried overnight, 
ground with TissueLyser II (QIAGEN®, Germany) with 
30-s grinding intervals at 30  Hz, separated by 1-min 
pauses, and stored at room temperature. In addition, to 
validate the surface sterilization process, water washes 
from the final rinse were collected, and microbial DNA 
was detected by extraction, PCR amplification, and 
sequencing, following the same procedures as those used 
for real samples (detailed below).

The soil samples were sieved to 2  mm no later than 
10  days after harvest. To avoid cross-contamination, 
the gloves were changed, and sieves were disinfected 
between samples from different plots and different areas. 
The sieves were cleaned by removing the soil with tap 

water, disinfected with 3.6% bleach, washed with water, 
sprayed with 70% ethanol, and finally air dried. After 
sieving, each soil sample was homogenized by hand. Two 
50  mL tubes were subsampled from the homogenized 
soil. One tube was kept at room temperature for physico-
chemical analysis, whereas the other, intended for meta-
barcoding analysis, was freeze-dried overnight prior to 
DNA extraction.

Soil physicochemical analysis
The four soil samples collected from the same sampling 
area of the same plot were pooled before being sent to 
the Laboratoire d’Analyses des Sols d’Arras, France [52]. 
The analysis included measurements of the three-frag-
ment particle size, C/N ratio, pH, organic matter content, 
and content of total limestone, total carbon, total nitro-
gen and total organic carbon.

DNA extraction
DNA extraction, amplification, library preparation and 
sequencing were performed at the Genome Transcrip-
tome Facility of Bordeaux (France). Extractions were 
performed in a confined laboratory dedicated to envi-
ronmental DNA studies. We used the PowerSoil® Pro Kit 
(QIAGEN®, Germany) for DNA extraction from the soil 
and phyllosphere samples and the DNeasy® Mini Plant 
Kit (QIAGEN®, Germany) for the endosphere samples. 
These kits were used in individual tubes to limit cross-
contamination between samples. For soil DNA extrac-
tion, 200 mg of homogenized soil was used, whereas for 
endosphere DNA extraction, 10  mg of leaf powder was 
used. Phyllosphere DNA was extracted directly from the 
frozen pellet. The extractions were performed accord-
ing to the manufacturer’s instructions, with slight modi-
fications. To reduce handling, PowerBeads® from the 
PowerSoil® Pro Kit were transferred directly into 2  mL 
collection tubes containing soil and phyllosphere mate-
rial instead of using PowerBead® Pro Tubes. In addition, 
to facilitate cell lysis, the tubes were incubated at 65  °C 
for 10 min after the addition of CD1 lysis buffer and prior 
to the homogenization step. The DNA was eluted in 
100 µL using the DNeasy® Mini Plant Kit for endosphere 
samples.

This DNA was then used for bacterial and fungal com-
munity profiling by short- and long-read sequencing and 
for P. viticola quantification by digital droplet PCR.

Short‑read sequencing of bacterial and fungal 
communities
To characterize fungal communities, the internal tran-
scribed spacer 1 (ITS1) region of the fungal nuclear 
ribosomal DNA (nrDNA) ITS gene was amplified using 
the ITS1F forward primer [53] and the ITS2 reverse 
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primer [54]. We also tested the primer set ITS1catta—
ITS2ngs [55, 56], which targets the nrDNA ITS gene 
of both fungi and oomycetes and has been successfully 
used in grapevine [57]. However, we ultimately did not 
use this primer set because of its lack of specificity in 
our samples (Supplementary Methods S1 and Fig. S3 
and S4). For bacterial communities, the V5-V6 region 
of the bacterial 16S ribosomal RNA (rRNA) gene was 
amplified using the chloroplast-excluding forward 
primer 799f [58] and the reverse primer 1115r [59]. 
PCRs were performed with 5 μL of template DNA 
(corresponding approximately to a mean of 16 ± 8.5 
ng (standard error) for topsoil samples, 71 ± 31 ng for 
endosphere samples, and < 1 ng for phyllosphere sam-
ples), 2 μL of each primer (3 µM concentration), 4 μL 
of HOT FIREPol® MultiPlex Mix (5X concentration) 
(Solis BioDyne, Lithuania) and ultrapure water to a 
total volume of 20 μL. The thermocycling conditions 
for nrDNA ITS gene amplification were as follows: 
95 °C/15 min; 95 °C/30 s, 56 °C/30 s, 72 °C/30 s for 35 
cycles; and 72 °C/5 min. The thermocycling conditions 
for 16S rRNA gene amplification were as follows: initial 
denaturation at 95 °C for 15 min, followed by 30 cycles 
at 95 °C for 30 s, 49 °C for 30 s, and 72 °C for 30 s, with 
a final extension at 72  °C for 5 min. Amplification was 
confirmed by electrophoresis on 2% agarose gels.

We included four types of controls in the PCR plates: 
negative extraction controls, negative PCR controls, 
positive PCR controls, and negative sequencing con-
trols. Negative extraction controls were obtained 
by performing DNA extractions in empty collection 
tubes (without samples) to detect and analyze poten-
tial contamination during the DNA extraction pro-
cess. For negative PCR controls, ultrapure water was 
used instead of a DNA template to detect and analyze 
potential contamination during the PCR process. Posi-
tive PCR controls were used to verify that the PCRs 
worked well for each plate and to detect cross-contam-
ination. They consisted of pure DNA from two marine 
fungi (Candida oceani and Wallemia sebi) and  bacte-
ria (Sulfitobacter pontiacus and Vibrio splendidus)  for 
PCRs performed on the nrDNA ITS and 16S rRNA 
genes, respectively. These strains were chosen because 
they are unlikely to be present in our samples, which 
helps to detect and evaluate the rate of cross-con-
tamination between wells of the same plate. Negative 
sequencing controls, consisting of empty wells, were 
filled with ultrapure water to serve as controls for the 
second PCR (indexing step). The PCR plate maps were 
designed according to the guidelines of [60]. Each plate 
had 2–3 extraction negative controls, 2–3 PCR nega-
tive controls, and 2–3 PCR positive controls randomly 
distributed on the plate. Negative sequencing controls 

were placed in a diagonal line to estimate tag switch 
rates for as many index combinations as possible.

The second PCR was used to add Illumina® adapters 
and tags and was performed by the Genome Transcrip-
tome Facility of Bordeaux (France) following the 16S 
rRNA gene Metagenomic Sequencing Library Prepa-
ration protocol (Illumina®). After this indexing step, 
the libraries were quantified by fluorescence using the 
Quant-iT™ dsDNA High Sensitivity Assay Kit (Thermo 
Fisher Scientific™, USA) and pooled to an equimolar 
concentration. The final pool was purified using a 300–
700 bp size selection on a Pippin Prep® (Sage Science™, 
USA) to remove large nonspecific fragments and the 
remaining adapters. Pool size was assessed on a TapeSta-
tion 4200 system (Agilent Technologies®, USA), and 
the concentration was estimated by qPCR on an LC480 
II system (Roche®, Switzerland) using the QIAseq® 
Library Quant Kit (QIAGEN®, Germany). Sequencing 
was performed on a NextSeq® 2000 system (Illumina®, 
USA) using P1 reagents and 301:10:10:301 cycles. The 
samples were split into three sequencing runs. The first 
run included all 2022 phyllosphere samples and half of 
the 2022 soil samples. The second run included all 2022 
endosphere samples and the remaining soil samples. The 
third run included all 2023 samples. In each run, nrDNA 
ITS and 16S rRNA amplicons were mixed a 1:1 ratio. 
Adapter removal and demultiplexing were performed at 
the sequencing facility using the Cutadapt tool.

Long‑read sequencing of bacterial communities
To improve the taxonomic characterization of the bac-
terial communities, we also sequenced the entire 16S 
rRNA gene (V1-V9) using PacBio® HiFi technology. 
Sequencing was performed at the GeT-IT Genotoul 
facility (Toulouse, France). We prepared one DNA pool 
per microbial habitat (soil, leaf endosphere and phyllo-
sphere). Amplification of the full-length 16S rRNA gene 
was performed using the universal primer set 27f (AGR 
GTT YGATYMTGG CTC AG) and 1492r (RGY TAC CTT 
GTT ACG ACT T) [61]. Amplification was performed at 
20 cycles with an annealing temperature of 57 °C. SMRT-
bell® libraries were prepared at the GeT-PlaGe Core 
Facility (Toulouse, France) from the amplified DNA by 
blunt-ligation according to the PacBio® protocol "Pre-
paring SMRTbell® Libraries using PacBio® Barcoded 
Overhang Adapters for Multiplexing Amplicons" (Pacific 
Biosciences®). At each step, the DNA was quantified 
using the Qubit® dsDNA HS Assay Kit (Life Technolo-
gies™), and the amplicon size was assessed using the 
DNF-474-0500_HS NGS Fragment Analysis Kit (Agilent 
Technologies®). The purification steps were performed 
using AMPure® PB Beads (PacBio®). Purified SMRTbell® 
libraries of approximately 1560 bp were then sequenced 
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using Binding Kit 3.1 and Sequencing Kit 2.0 by diffu-
sion loading on a SMARTcell® of the PacBio Sequel® 
II instrument at 70  pM with a 0.8-h preextension and 
a 15-h run. Circular consensus sequence (CCS) reads 
were generated from the raw PacBio® sequencing data 
using the standard software tools provided by the manu-
facturer (Pacific Biosciences®), with minPasses = 3 and 
minPredictedAccuracy = 0.999 in SMRT Link software 
(release_12.0.0.177059).

Quantification of the downy mildew inoculum in the soil 
samples
The downy mildew inoculum in all soil samples was 
quantified using droplet digital PCR (ddPCR) at the 
Transcriptomic-qPCR facility of the Neurocenter 
Magendie (Bordeaux, France). The primers used for the 
ddPCRs were Giop F (TCC TGC AAT TCG CAT TAC GT) 
and Giop R (GGT TGC AGC TAA TGG ATT CCTA) [62]. 
PCRs were prepared with the required QX200™ ddPCR™ 
Supermix for Probes (Bio-Rad®, USA) at a final concen-
tration of 750 nM for each primer and 500 nM for the 
TaqMan® probe (Giop P-VIC: TCG CAG TTC GCA GCG 
TTC TTCA) to a final volume of 22 µL. Then, 4 µL of 
each sample was added to the reaction mixture. Each 
reaction was loaded into a sample well of an 8-well dis-
posable cartridge (Bio-Rad®, USA), and 70 µL of droplet 
generator oil (Bio-Rad®, USA) was added to the oil wells 
of the cartridge. Droplets were formed in the QX200™ 
Droplet Generator (Bio-Rad®, USA), transferred to a 
96-well PCR plate, heat-sealed with foil in a PX1™ PCR 
Plate Sealer (Bio-Rad®, USA), and amplified using an 
Eppendorf™ Mastercycler™ Nexus Gradient (Eppen-
dorf™, Germany) (95 °C primary denaturation/activation 
for 5 min, followed by 40 cycles of 95 °C for 30 s, 60 °C for 
1 min, and 72 °C for 30 s, followed by 98 °C for 10 min). 
PCRs were analyzed using the QX200™ Droplet Reader 
(Bio-Rad®, USA), and data analysis was performed using 
QuantaSoft™ software (version 1.7; Bio-Rad®, USA).

Bioinformatics
Bioinformatic analysis of Illumina and PacBio sequence 
data was performed using version 4.1 of the FROGS 
pipeline [63] on the Genotoul remote server [64]. For 
Illumina sequence data, separate analyses were per-
formed for each barcode region (nrDNA ITS or 16S 
rRNA genes). The FROGS pipeline first assembled raw 
forward and reverse reads for each sample into paired-
end reads with a minimum overlap of 10 nucleotides 
and a maximum mismatch of 0.1 using the VSEARCH 
algorithm [65]. For fungal data, unmerged reads 
were artificially joined by inserting a 100 N sequence 
between the forward and reverse reads [63]. The 

primers were removed using Cutadapt [66]. Sequences 
containing ambiguous nucleotides or whose size did 
not match the expected amplicon size (between 50 
and 600 bp for the rDNA ITS gene and 250–400 bp for 
the 16S rRNA gene) were filtered out. The sequences 
were then dereplicated and clustered using SWARM 
[67] with a local clustering threshold parameter set to 
1 and the ’fastidious’ option enabled [68]. These clus-
ters of sequences are equivalent in construction to 
Amplicon Sequence Variants (ASVs) [69] and are here-
after referred to as ASVs. Chimeras were detected and 
removed using VSEARCH [65]. A stringent filtering 
step was applied, which consisted of retaining only 
ASVs representing at least 0.00005% of the sequences 
in the dataset. For the fungal data, the highly variable 
part of the ITS1 region was extracted using ITSx [70]. 
PacBio HiFi 16S rRNA raw sequences were processed 
in a similar manner, specifying that the data were 
from long-read sequencing and adjusting the expected 
amplicon size to 500–2000 bp.

Taxonomic assignments of bacterial and fungal ASVs 
obtained from Illumina sequence data were performed 
using the SILVA 138.1 [71] and UNITE Fungi 8.3 [72] 
reference databases, respectively, using both the RDP-
Classifier [73] and BLASTn + algorithms [74]  (Sup-
plementary Methods S3). In addition, we performed 
taxonomic assignments using BLASTn + against a cus-
tom reference database. This custom database consisted 
of both sequences from bacterial ASVs generated using 
PacBio technology and  Sanger sequences from 462 
bacterial strains and 547 fungal strains  (Supplemen-
tary Methods S2).  These strains were all  isolated from 
grapevine leaves collected from two of the plot pairs 
(Jaswa et al., in preparation) (Supplementary Methods 
S2). As a result, we obtained up to three taxonomic 
assignments for each ASV (Supplementary Methods 
S3). A decision tree was constructed to select the most 
reliable assignment (Supplementary Fig. S5).

Finally, we decontaminated the datasets using the 
metabaR R package v1.0.0 [75]. Since contamination 
may vary across experiments, depending on labora-
tory conditions and reagents, we performed separate 
decontamination of twelve subsets of the data, each 
corresponding to a combination of one barcode region 
(nrDNA ITS or 16S rRNA genes), one microbial habitat 
(topsoil, phyllosphere, or endosphere), and one sam-
pling year (2022 or 2023). The contaslayer function was 
used to identify ASVs whose relative abundance in the 
entire dataset was highest in at least one control com-
pared with true samples [75]. These ASVs were consid-
ered contaminants and were removed from the dataset. 
Next, the tagjumpslayer function was used to detect 
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artifacts such as tag jumps and reduce the noise they 
cause by removing an ASV from a given PCR product 
if its relative abundance across the entire dataset was 
below a specified threshold. This threshold was deter-
mined empirically, as recommended in the metabaR 
tutorial,1 using the visualization functions of the meta-
baR package created for this purpose. Finally, a histo-
gram of the number of reads per sample was plotted, 
and samples with low sequencing depth, located in the 
lower tail of the normal distribution curve, were con-
sidered failed PCRs and removed.

Statistical analysis
All the statistical analyses were performed with R v4.2.3 
[76]. Microbial community analyses were performed 
using the R packages phyloseq v1.48.0 [77] and speedyseq 
v0.5.3.9018 [78], and all figures were generated using the 
ggplot2 v3 package. 5.1 [79], cowplot v1.1.3 [80], ggh4x 
v0.2.8 [81], ggsignif v0.6.4 [82], patchwork v1.2.0 [83], 
microViz v0.10.8 [84], and ggtext v0.1.2 [85]. Microbial 
community analyses were based on sample × ASV raw 
count matrices or matrices transformed to account for 
compositional effects. These effects were accounted for 
by transforming raw sequence counts using the centered 
log-ratio (CLR) transformation [86]. Prior to the CLR 
transformation, we applied a Bayesian multiplicative 
treatment of zeros in the sample × ASV matrices using 
the cmultRepl function of the zComposition package 
v1.5.0.3 [87]. This function converts zero counts, which 
would lead to errors in the log ratios, into estimates close 
to zero, assuming that these zeros are due to undersam-
pling rather than absence. It also drops rows (ASVs) or 
columns (samples) with more than 80% zero or miss-
ing data. The analyses of beta and alpha diversity and 
the search for microbial consortia of interest for downy 
mildew biocontrol presented below were performed sep-
arately for each combination of microbial habitat (top-
soil, phyllosphere, or leaf endosphere) and PCR marker 
(nrDNA ITS or 16S rRNA genes).

Analysis of the relationship between foliar symptoms 
of downy mildew and the amount of inoculum in topsoil
We evaluated the relationship between the incidence and 
severity of downy mildew in the plot, which was defined 
based on several years of foliar and bunch symptom 
monitoring, and the concentration of P. viticola DNA in 
the topsoil at the time of sampling, using a linear mixed 
effects model. The model included the concentration of 
P. viticola DNA in the topsoil as the dependent variable 

and the the incidence and severity of downy mildew in 
the plot (high or low) as a fixed factor. Other variables 
that may influence the amount of P. viticola oospores in 
the topsoil were also included as fixed factors: the year 
of sampling (2022 or 2023), whether fungicide treat-
ments were applied to the area sampled the year before 
(yes or no), and the location of the soil sample within 
the plot (on the edge of the plot or not). An interaction 
term between fungicide application and within-plot loca-
tion was also included, and the plot pair was included as 
a random effect. Models were built using the lmer func-
tion from v3.1.3 of the lmerTest package [88] and evalu-
ated with Type II ANOVA using v3.1.2 of the car package 
[89]. Graphical checks for homoscedasticity and normal-
ity of the residuals were performed using the packages 
performance v0.12.0 [90] and DHARMa v0.4.6 [91]. The 
variance explained by the model was estimated using the 
conditional coefficient of determination  (R2c) and the 
marginal coefficient of determination  (R2m) provided 
by the r2 function of the performance package. The for-
mer coefficient represents the variance explained by the 
entire model, whereas the latter represents the variance 
explained by the fixed effects only.

Analysis of the environmental factors driving within‑plot 
and between‑plot variation in the microbial composition 
of topsoil and leaf (endosphere and phyllosphere)
Principal Component Analysis (PCA) was applied to 
the sample × ASV matrix transformed by CLR to visu-
alize variation in microbial community composition 
using the microViz package. We then identified key 
factors influencing community composition using vari-
ance partitioning and Redundancy Analysis (RDA), 
implemented using respectively the varpart and rda 
functions of the vegan package v2.6.4 [92]. The same 
explanatory factors were used in both analyses (Sup-
plementary Table  S1). For variance partitioning, we 
categorized them into 4 groups: soil physical chemistry 
(Soil; 9 variables), grape variety and management (Man-
agement; 3 variables), weather during the month before 
sampling (Weather; 30 variables), and sampling loca-
tion (Space; 4 variables) (Supplementary Table S1). For 
both variance partitioning and RDA, the sample x ASV 
matrix transformed by CLR was used as the response. 
Non-numeric variables were treated as dummy varia-
bles, and all variables were standardized using the scale 
function. For the RDA, an automatic stepwise selection 
of explanatory variables, both forward and backward, 
was performed using the ordistep function of the vegan 
package in R. Finally, an RDA was performed with all 
selected explanatory variables included as constraints. 
Permutation tests were performed using the anova.cca 
function of the vegan package to assess the significance 1 https:// metab arfac tory. github. io/ metab aR/ artic les/ metab aRF- vigne tte. 

html.

https://metabarfactory.github.io/metabaR/articles/metabaRF-vignette.html
https://metabarfactory.github.io/metabaR/articles/metabaRF-vignette.html
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of the fitted models and to evaluate the marginal effects 
of the constraints.

Testing whether microbial diversity in topsoil and leaves 
is higher in vineyard plots with lower downy mildew 
incidence and severity
To investigate whether microbial diversity in topsoil 
and leaves is higher in vineyard plots with lower downy 
mildew incidence and severity (hypothesis (i)), we cal-
culated three α diversity indices. These indices are part 
of the Hill number framework [93], which includes a 
parameter q that determines the sensitivity of the indi-
ces to the relative abundance of ASVs. This framework 
gives less weight to rare ASVs as q increases. The Hill 
number corresponding to q = 0 represents the richness 
of ASVs, where each ASV counts is assigned a value of 
1 regardless of its relative abundance. The Hill number 
corresponding to q = 1 is the exponential of Shannon’s 
entropy index [94], where the weight of each ASV is 
proportional to its relative abundance. The Hill num-
ber corresponding to q = 2 is the inverse of Simpson’s 
concentration index [95], which disproportionately 
favors abundant ASVs and is particularly relevant for 
metabarcoding data, as rare ASVs often correspond 
to artifacts, and their inclusion can lead to erroneous 
ecological conclusions [60]. The three observed alpha 
diversity indices, with q = 0 to 2, were calculated from 
the sample × ASV raw count matrix using the Chao-
Richness, ChaoShannon, and ChaoSimpson functions in 
the iNEXT v3.0.1 package [93, 96]. The effect of downy 
mildew incidence and severity on microbial commu-
nity alpha diversity was assessed using linear mixed 
effects models. We constructed 36 models, each cor-
responding to a combination of one microbial habitat 
(topsoil, phyllosphere or leaf endosphere), one PCR 
marker (nrDNA ITS or 16S rRNA genes), one  year of 
sampling (2022 or 2023) and one alpha diversity index 
(q = 1, 2 or 3). For the 2022 sampling campaign, the 
model included three fixed effects: the incidence and 
severity of downy mildew in the plot (high or low), 
whether fungicides were applied to the sampled area 
in the year before (yes or not), and the location of the 
sample within the plot (on the edge or not). For the 
2023 sampling campaign, the model included only the 
incidence and severity of downy mildew in the plot 
(high or low) because the samples were collected exclu-
sively from the center of the plots, and all the sampled 
vines had received fungicide treatment the year before. 
Both models included pairs of plots as random effects. 
Graphical checks for homoscedasticity and normality 
of the residuals were performed using the performance 
and DHARMa packages. Model construction and 

evaluation were performed using the lmerTest and car 
packages.

Testing whether plots with low downy mildew incidence 
and severity harbor a greater abundance of specific 
microbial taxa in topsoil and leaves
To investigate whether plots with low downy mildew 
incidence and severity harbored a higher abundance of 
specific microbial taxa (hypothesis (ii)), we used a set of 
four Differential Abundance Analysis (DAA) methods 
recommended in the recent literature: ANCOM-BC2 
[97], Maaslin2 [98], LinDA [99] and ZicoSeq [100]. We 
selected these methods for the following reasons: they 
were specifically developed for microbiota analysis by 
explicitly accounting for zero inflation and compositional 
effects; they allow the specification of random and covar-
iate effects; and they have been recommended in recent 
methodological studies [100–103]. This set of 4 DAA was 
used to compare ASV abundances between plots with 
high and low downy mildew incidence and severity while 
accounting for microbial community variation between 
plot pairs. For all four methods, the plot pair was 
included as a random factor, and the parameters were set 
to defaults except for the minimum prevalence thresh-
old, which was set to 10%, and the adjusted p value for 
an ASV to be considered differentially abundant, which 
was set to 0.05. All analyses were performed using the 
sample × ASV raw count matrix. They were performed 
using the ANCOMBC v2.0.3 [104, 105], Maaslin2 v1.12.0 
[98], GUniFrac v1.8 [106], and MicrobiomeStat v1.2 [107] 
packages.

For each ASV identified as differentially abundant by 
at least one of the four DAA methods, we calculated two 
scores: (1) the number of methods that identified the 
ASV as differentially abundant, ranging from 1 to 5, and 
(2) the average association coefficient between the meth-
ods. To calculate the average association coefficient, the 
coefficients provided by each DAA method were stand-
ardized between 0 and 1 if the ASV was more abundant 
in low incidence and severity plots and between 0 and 
-1 if the ASV was more abundant in high incidence and 
severity plots before the average coefficient between 
methods was calculated. Finally, we included the Random 
Forest (RF) algorithm (see below) as a fifth method and 
used the Gini index provided by the RF algorithm to cal-
culate the average association coefficient.

Testing whether plots with low amount of downy mildew 
inoculum harbor a greater abundance of specific microbial 
taxa in topsoil and leaves
In addition, we investigated whether plots with low 
amounts of P. viticola oospores in the topsoil harbored 
specific microbial taxa using the Threshold Indicator 
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Taxa ANalysis (TITAN) method of the TITAN2 package 
v2.4.3 [108]. This method analyzes changes in community 
composition along ecological gradients. Our goal was to 
identify microbial taxa that covary with the concentra-
tion of P. viticola DNA in the topsoil. For this analysis, 
we used the sample × ASV raw count matrix, retaining 
only microbial ASVs with more than 100 total reads and 
present in at least 3 samples, as required by the titan 
function. The method identified ASVs whose abundance 
increased as the P. viticola DNA concentration decreased 
and ASVs whose abundance increased as the P. viticola 
DNA concentration increased. These ASVs are hereafter 
referred to as indicators of low and high P. viticola DNA 
concentrations in topsoil. To evaluate the strength of the 
relationship, we used the standardized Indicator Value 
(IndVal) score defined by Dufrene and Legendre [109] 
and expressed it as a z score.

Testing whether the incidence and severity of downy 
mildew in the plot are predictable from microbiota 
composition
We used Random Forest (RF) algorithms to assess the 
predictive power of microbiota composition. We tested 
whether downy mildew incidence and severity in plots 
can be predicted from the microbiota composition 
(hypothesis (iii)) and whether the leaf microbiota is a bet-
ter predictor of disease severity and incidence compared 
to the soil microbiota (hypothesis (iv)). For this purpose, 
we used the microranger package v0.0.0.9000 [110, 111], 
which includes RF classification functions derived from 
the ranger package [112] and was specifically designed to 
classify microbial communities.

We first analyzed the predictive power of microbiota 
composition on samples collected within the same year, 
using data collected in 2022. We used the rf.opti.mtry.
taxo function to train the RF algorithm on a set of 36 
ASV tables for each microbial habitat (phyllosphere, leaf 
endosphere, and topsoil). Each table was a sample × ASV 
raw count matrix corresponding to a microbiota subset 
(fungi only, bacteria only, or both), a filtering threshold 
(all ASVs or only abundant ASVs), and a level of taxo-
nomic aggregation (ASV, species, genus, family, class, 
or order). Abundant ASVs were defined as those with a 
read count greater than the third quartile of the ASV read 
count distribution. Training of the RF algorithm involved 
500 decision trees for each table, with nonrandom k-fold 
cross-validation. The algorithm used 80% of the pairs of 
plots as the training dataset and the remaining 20% as the 
validation dataset. The cross-validation was performed 
on all possible splits of the entire dataset, with the only 
condition that the plots belonging to the same pair were 
both in the training dataset or both in the validation data-
set. This condition ensured that the algorithm focused 

on learning downy mildew incidence and severity rather 
than the spatial location of the plots. We optimized each 
algorithm using 20 different values for the mtry param-
eter, which represents the number of variables consid-
ered at each node division of the decision tree. The best 
mtry value for each of the 36 ASV tables was selected 
on the basis of the error rate of the algorithm, as done in 
Cambon et al. [111]. Next, we used the rf.blind function 
to obtain the Gini index and associated p value estimated 
by permutation using the Altmann method [113], allow-
ing us to identify which ASVs were most important for 
classification.

Finally, we assessed the predictive power of the micro-
biome composition on the samples collected the follow-
ing year. The 2022 dataset was used for training, and the 
2023 dataset for validation. To create the validation sets, 
we randomly grouped pairs of plots sampled in 2023 into 
groups of two, with each plot assigned to a single valida-
tion group. We then used all possible combinations of 
80% of the plot pairs sampled in 2022 for training and 
validated the model on each validation group.

Results
Seven pairs of vineyard plots were selected based 
on epidemiological records of downy mildew
Seven different pairs of vineyard plots, all located in 
southwestern France (Fig.  1), were selected for the pre-
sent study based on the analysis of epidemiological 
records (Table  1). They came from four distinct wine-
growing regions and were named according to their 
region of origin: three in the Médoc (ME1, ME2, ME3), 
one in Libournais (LIB), one in Entre-deux-Mers (E2M) 
and two in Côtes de Buzet (CDB1, CDB2) (Fig.  1 and 
Table 1). Both plots within a pair were planted with the 
same variety, managed in a similar way and located close 
to each other (Table 1). Each pair of plots consisted of a 
plot with lower downy mildew incidence and severity and 
a plot with higher downy mildew incidence and severity 
(Fig. 2A and Supplementary Fig. S6). The area under the 
disease progression curve (AUDPC) was calculated for 
the years 2019–2021 and averaged for each of the 7 pairs 
and compared with that of the 1200 plots monitored by 
IFV (Fig. 2B).

The AUDPC values of the 7 plots with low downy 
mildew incidence and severity were always lower than 
those of the plots with high-incidence and severity for 
the 4 variables of the same pair, as expected by the selec-
tion process (Fig.  2B). The differences between low and 
high values of the same pair varied between pairs and 
between variables (Fig. 2B). For most pairs except CDB2, 
all AUDPC values in the low-incidence and severity plots 
are lower than the lowest AUDPC value in the high-inci-
dence and severity plots. The values of the selected pairs 
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are among the most frequent values of the 1200 plots but 
not the extremes (Fig. 2B).

The pairs of plots differed slightly between the 2022 
and 2023 sampling campaigns (Table 1). In 2022, 14 vine-
yard plots, which formed 7 pairs that resulted contrasting 
in terms of epidemiological history, met the 5 selection 
criteria. However, only 5 pairs (named LIB, ME1, ME2, 
E2M, and CDB1) could be sampled at the chosen pheno-
logical stage and before the first fungicide treatment. In 
2023, 12 vineyard plots, which formed 6 pairs contrast-
ing in terms of epidemiological history, met the 5 selec-
tion criteria. These pairs included 4 pairs already selected 
in 2022 (all except CDB1, where one of the plots started 
an organic conversion) and two new pairs (ME3, CDB2) 
(Table 1). All six selected pairs could be sampled at the 
chosen phenological stage and before the first fungicide 
treatment. In total, we studied 7 pairs of plots (LIB, ME1, 
ME2, ME3, E2M, CDB1, and CDB2), and each pair was 
sampled at least once (Table 1).

The amount of downy mildew inoculum in topsoil is lower 
in plots with low downy mildew incidence and severity
The topsoil P. viticola DNA concentration was sig-
nificantly lower in plots classified as low- incidence 
and severity plots based on symptoms on leaves and 
bunches (Linear Mixed-Effects Models, p < 0.05*; Sup-
plementary Table  S2 and Fig. S7). In addition, topsoil 
samples collected from plot  areas treated with fungi-
cide in the previous year had significantly lower topsoil 
P. viticola DNA concentrations (Linear Mixed-Effects 
Models, p < 0.001***; Supplementary Table  S2 and Fig. 
S7). Within-plot location had a significant effect on the 
topsoil P. viticola DNA concentration, with samples 
collected along plot edges showing a lower concentra-
tion than those collected in the center of the plots (Lin-
ear Mixed-Effects Models, p < 0.001***; Supplementary 
Table S2 and Fig. S7). In addition, we detected a higher 
concentration of P. viticola DNA in the soil in 2022 
than in 2023 (Linear Mixed-Effects Models, p < 0.001***; 

Fig. 1 Map of the vineyard plots. Seven pairs of plots that differed in their downy mildew incidence and severity were selected for the present 
study. They were all located in France (map 1) in the Nouvelle-Aquitaine region (map 2). They belonged to four wine-growing areas, namely, 
Médoc (ME), Libournais (LIB), Entre-deux-Mers (E2M) and Côtes de Buzet (CDB) (maps 3a–d). Plots belonging to the same pair are represented 
with the same color, with symbols indicating high and low downy mildew incidence and severity (triangles and circles, respectively). The distance 
between plots within a pair ranged from 0 km for pair CDB2 (adjacent plots) to 7.5 km for pair E2M (Table 1)
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Supplementary Table  S2 and Fig. S7), which was likely 
due to the more severe downy mildew epidemic in 2021 
than in 2022 (Fig. 2A and Supplementary Fig. S6).

Topsoil, phyllosphere and leaf endosphere microbial 
communities have different compositions
After filtering, the final fungal dataset contained 
136,681,217 reads grouped into 795 ASVs, while the final 
bacterial dataset contained 32,678,727 reads grouped 
into 1561 ASVs (Supplementary Table S3). Using PacBio 
sequencing, we obtained 35,934 reads representing 524 
bacterial ASVs, allowing us to improve the taxonomic 
assignment of 154 bacterial ASVs (out of 1561). Using 
Sanger sequencing of our collection of grapevine foliar 
microorganisms, we were able to improve the taxonomic 
assignment of 88 fungal ASVs (out of 795).

Topsoil, phyllosphere and leaf endosphere harbored 
different microbial community compositions (Fig.  3), 
including variations in the most abundant fungal species 

and bacterial genera (Supplementary Table  S4 and S5). 
Microbial community profiles remained consistent 
across years (Fig. 3, Supplementary Fig. S8; Supplemen-
tary Tables S4–S7).

Soil physico‑chemistry and weather have a stronger 
influence on microbiota composition than grape variety 
and management practices
Topsoil microbial communities (both fungi and bacte-
ria) and phyllosphere fungal communities were spatially 
structured, with marked differences in composition 
between plots and plot pairs. This spatial structuring was 
consistent across years (Fig. 4 for 2022 and Supplemen-
tary Fig. S9 for 2023). Each plot pair had its own micro-
bial community composition, and the plot pairs that 
were geographically close (for example, ME1 and ME2 in 
2022, both located in the Medoc region; Fig. 1) had more 
similar communities (Fig. 4 and Supplementary Fig. S9). 
In contrast, the phyllosphere bacterial communities and 
leaf endosphere communities (both fungi and bacteria) 

Table 1 Description of the pairs of vineyard plots

Each pair consisted of one plot with low downy mildew incidence and severity (labeled_L) and one plot with high downy mildew incidence and severity (labeled_H) 
according to long-term epidemiological data. Five pairs of plots were sampled in 2022, and six were sampled in 2023. All the grape varieties in these plots are naturally 
susceptible to downy mildew

Plot pair Plot name Downy mildew 
incidence and 
severity

GPS coordinates Geographic 
distance 
between plots

Grape variety Management Sampling year(s)

Libournais (LIB) LIB_L Low 44° 53′ 52.4″ N 0° 
09′ 13.7″ W

6 km Merlot Noir Biodynamic 2022 and 2023

LIB_H High 44° 52′ 55.6″ N 0° 
04′ 48.3″ W

Médoc1 (ME1) ME1_L Low 45° 14′ 50.7″ N 0° 
46′ 00.4″ W

1 km Merlot Noir Organic 2022 and 2023

ME1_H High 45° 14′ 35.8″ N 0° 
45′ 15.4″ W

Médoc2 (ME2) ME2_L Low 45° 14′ 45.4″ N 0° 
45′ 37.6″ W

0.5 km Cabernet Sauvi-
gnon

Organic 2022 and 2023

ME2_H High 45° 14′ 34.3″ N 0° 
45′ 21.8″ W

Médoc3 (ME3) ME3_L Low 45° 14′ 50.1″ N 0° 
45′ 38.0″ W

0.6 km Merlot Noir Organic 2023

ME3_H High 45° 14′ 58.5″ N 0° 
45′ 11.3″ W

Entre-deux-Mers 
(E2M)

E2M_L Low 44° 50′ 43.8″ N 0° 
25′ 16.3″ W

7.5 km Merlot Noir Conventional 2022 and 2023

E2M_H High 44° 49′ 52.1″ N 0° 
19′ 42.2″ W

Côtes de Buzet1 
(CDB1)

CDB1_L Low 44° 12′ 38.5″ N 0° 
22′ 21.7″ E

6.7 km Merlot Noir Conventional 2022

CDB1_H High 44° 14′ 26.7″ N 0° 
17′ 53.0″ E

Côtes de Buzet2 
(CDB2)

CDB2_L Low 44° 12′ 33.4″ N 0° 
22′ 09.7″ E

0 km Merlot Noir Organic 2023

CDB2_H High 44° 12′ 34.0″ N 0° 
22′ 15.3″ E
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Fig. 2 Epidemiological features of vineyard plots. A Downy mildew disease progression curves for the high- incidence and severity (in orange) 
and low- incidence and severity (in blue) plots of the ME2 plot pair over seven years of epidemiological monitoring and B average areas 
under the downy mildew progression curves (AUDPC) for the seven pairs of plots selected in the present study. AUDPC values were averaged 
across the years 2019, 2020, and 2021 (i.e., the common years of epidemiological monitoring for the seven pairs of plots). The average AUDPC 
values for plots belonging to the same pair are represented with the same color, with symbols indicating high or low downy mildew incidence 
and severity (triangles and circles, respectively). The gray histograms represent the distribution of average AUDPC values for the other plots included 
in the epidemiological database and monitored during the same years
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showed little spatial structuring (Fig. 4 for 2022 and Sup-
plementary Fig. S9 for 2023).

The composition of the topsoil fungal and bacterial 
communities, as well as the phyllosphere fungal com-
munities, were mainly structured by two factors: the 
weather of the past month (Weather) and the phys-
icochemical properties of the soil (Soil) (Supplemen-
tary Table  S1). In 2022, Weather explained 43.01% of 
the variance in topsoil fungal community composi-
tion, 53.56% of the variance in topsoil bacterial com-
munity composition, and 33.75% of the variance in 

phyllosphere fungal communities (Supplementary 
Fig. S10). Soil was nearly as influential, accounting 
for 42.08% of the variance in topsoil fungal commu-
nity composition, 54.76% of the variance in topsoil 
bacterial community composition, and 29.77% of the 
variance in phyllosphere fungal communities (Sup-
plementary Fig. S10). In 2023, the ranking of envi-
ronmental drivers remained similar, with Weather 
and Soil being the primary drivers of topsoil fungal 
and bacterial communities and phyllosphere fungal 

Fig. 3 Microbial community profiles depending on vineyard plot downy mildew incidence and severity. A Fungal and B bacterial community 
profiles of the topsoil, phyllosphere and leaf endosphere, representing the relative abundance of the different phyla averaged over the sixteen 
samples collected in each plot and each microbial habitat during the 2022 sampling campaign. Phyla representing less than 1% of the sequences 
were grouped into the “Other” category
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communities (Supplementary Fig. S11 and Supplemen-
tary file S2).

Management factors, including grape variety, man-
agement type (organic, biodynamic, conventional), and 
whether fungicide treatments were applied the year 
before sampling, had less influence on the microbiota 
composition than Weather and Soil (Supplementary 
Fig. S10) but were still retained as significant variables 
(Supplementary file S2). For example, management 
type, grape variety and fungicide treatment applied the 
year before sampling significantly influenced the com-
position of phyllosphere fungal communities (Supple-
mentary file S2).

Fungicide treatments decrease microbiota diversity 
in both topsoil and grapevine leaves, whereas edge effects 
increase it
Fungicide treatments altered not only the composition 
of phyllosphere fungal communities (Supplementary file 
S2) but also their diversity (Supplementary Tables S8 and 
S9). Using the 2022 dataset, we showed that fungicide 
treatments applied the year before sampling decreased 
the diversity of fungal communities in both the phyllo-
sphere and topsoil (Supplementary Table S8). In contrast, 
edge effects increased microbiota diversity. Topsoil  and 
endosphere fungal and bacterial communities, were more 
diverse at the edge of the plot than at the center (Supple-
mentary Table S8). These analyses could not be applied to 
the 2023 data because samples were collected exclusively 

Fig. 4 Variation in microbial community composition across vineyard plots. Dissimilarities among A fungal and B bacterial communities 
in the topsoil, phyllosphere and leaf endosphere for the five pairs of plots sampled in 2022, represented using a Principal Component Analysis 
(PCA). Samples collected from the same pair of plots are shown in the same color, with symbols indicating high and low downy mildew incidence 
and severity (triangles and circles, respectively)
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from the center of the plots that year, and all the samples 
originated from grapes that had received fungicide treat-
ment the previous year.

Microbial diversity is not consistently higher in plots 
with lower downy mildew incidence and severity
According to hypothesis (i), phyllosphere and endo-
sphere fungal communities sampled in 2022 were more 
diverse in plots with low downy mildew incidence and 
severity than in plots with high downy mildew inci-
dence and severity (Supplementary Table  S8 and Fig. 
S12). Differences were significant when diversity was 
measured by Shannon’s index but not Simpson’s index 
or observed richness (Supplementary Table  S8 and Fig. 
S12). However, these results were not consistent across 
years. In 2023, there was no difference in phyllosphere 
fungal diversity between plots with low and high downy 
mildew incidence and severity (Supplementary Table S9 
and Fig. S13). In addition, the diversity of endophytic 
fungi showed the opposite pattern from that in 2023 
(Supplementary Tables S8 and S9 and Fig. S12 and S13). 
Similarly, the difference in topsoil microbiota diversity 
between plots with low and high downy mildew inci-
dence and severity was not consistent across years. In 
2022, both topsoil fungal and bacterial communities were 
more diverse in plots with high downy mildew incidence 
and severity, contrary to hypothesis (i), while these differ-
ences were not significant in 2023 (Supplementary Tables 
S8 and S9 and Fig. S12 and S13).

Plots with low downy mildew incidence and severity 
harbor a greater abundance of specific microbial taxa
Consistent with hypothesis (ii), our analyses of the 2022 
dataset revealed 241 fungal and 462 bacterial ASVs 
that were significantly more abundant in plots with low 
downy mildew incidence and severity (Supplementary 
file S3). Differentially abundant ASVs were mainly found 
in the topsoil (141 fungal and 453 bacterial ASVs) and, 
to a lesser extent, in the phyllosphere (128 fungal and 
70 bacterial ASVs). Only 11 differentially abundant taxa, 
all fungi, were detected in the leaf endosphere (Supple-
mentary Fig. S14). In the topsoil, fungal species such as 
Coniochaeta fasciculata, Fusarium brachygibbosum, 
Didymella pomorum, Volutella ciliata, Robillarda sessilis, 
Paraphoma pye, and the Trichoderma species (T. virens 
and T. lixii) scored the highest (Supplementary Fig. S15). 
Additionally, the genus Mortierella (including M. exigua, 
M. alpina, and M. elongata) and basidiomycetous yeasts, 
such as Papiliotrema (including P. laurentii, P. terrestris, 
and P. flavescens), Rhodotorula (including R. babjevae 
and R. nothofagi), Leucosporidium (L. scottii and L. fra-
garium), Cystofilobasidium infirmominiatum, Erythroba-
sidium yunnanense, Filobasidium magnum, Filobasidium 

oeirense, and Dioszegia hungarica were also well-repre-
sented (Supplementary Fig. S15 and Supplementary file 
S3). In the phyllosphere, a large proportion of the taxa 
that were significantly more abundant in plots with low 
downy mildew incidence and severity were basidiomy-
cete yeasts, such as E. yunnanense, Tausonia pullulans, C. 
infirmominiatum, C. capitatum, R. nothofagi, Vishniacoz-
yma tephrensis, Buckleyzyma aurantiaca, Itersonilia per-
plexans, F. magnum, F. wieringae, and F. oeirense (Fig. 5). 
B. aurantiaca, V. tephrensis and Sphaerulina amelanch-
ier were consistently associated with low downy mil-
dew incidence and severity across all five DAA methods 
(Fig. 5). Conversely, some fungal ASVs were significantly 
more abundant in high-incidence and severity plots, such 
as the grapevine foliar pathogen Botrytis cinerea, which 
was more abundant in both the topsoil and phyllosphere 
(Supplementary file S3).

The most represented bacterial genera among the ASVs 
that could be assigned to species level were Pseudar-
throbacter, including P. equi (represented by 2 different 
ASVs), P. oxydans, and P. sulfonivorans; Pseudomonas, 
such as P. graminis and P. viridiflava; Streptomyces, which 
includes S. albidoflavus, S. ambofaciens, S. hygroscopicus, 
and S. xinghaiensis; Massilia, encompassing M. violacein-
igra, M. putida, and M. aurea; Bacillus, comprising B. 
nealsonii, B. litoralis, B. megaterium, and B. thermolactis; 
and Sphingomonas, featuring S. astaxanthinifaciens, S. 
aurantiaca, and S. sediminicola (represented by 2 differ-
ent ASVs) (Fig. 6 and Supplementary file S3). In addition, 
five ASVs of Arthrobacter globiformis were also found to 
be significant (Fig.  6 and Supplementary file S3). In the 
phyllosphere, two bacterial ASVs that could be assigned 
to species level were more abundant in low- incidence 
and severity plots as determined  by at least two meth-
ods: Arthrobacter pascens and Corynebacterium stationis 
(Supplementary Fig. S16), among others that could not 
be assigned to species.

Similar analyses were performed with the 2023 data-
set, which was smaller than the 2022 dataset because 
only 4 samples per plot were collected in 2023, whereas 
16 samples per plot were collected in 2022. Using this 
smaller dataset, we identified 75 fungal and 374 bacte-
rial ASVs that were significantly more abundant in plots 
with low downy mildew incidence and severity (Sup-
plementary file S3). Most of the differentially abundant 
ASVs were found in the topsoil (73 fungal ASVs and 373 
bacterial ASVs). More than half of these ASVs (40 fungal 
ASVs and 227 bacterial ASVs) were also found to be dif-
ferentially abundant in the 2022 dataset, indicating some 
reproducibility of the results across years. In addition, 
four differentially abundant ASVs (2 fungal ASVs and 2 
bacterial ASVs) were detected in the phyllosphere in the 
2023 dataset, one of which (Pseudopeziza medicaginis 
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ASV720) had already been identified as differentially 
abundant in the 2022 dataset (Supplementary file S3).

Areas with low amounts of downy mildew primary 
inoculum in the topsoil harbor a greater abundance 
of specific microbial taxa
Consistent with hypothesis (ii), our analyses of the 2022 
data identified 205 fungal ASVs and 518 bacterial ASVs 
whose relative abundances changed significantly with P. 
viticola DNA concentration in the topsoil (Supplemen-
tary file S4). Among them, 94 fungal ASVs (57 in the top-
soil, 37 in the phyllosphere, and 7 in the endosphere) and 
387 bacterial ASVs (196 in the topsoil, 272 in the phyl-
losphere, and none in the endosphere) were indicators of 
low DNA concentrations of P. viticola (Supplementary file 

S4). More than half of these indicators of low amounts of 
P. viticola primary inoculum in the topsoil were identified 
as more abundant in plots classified as low downy mildew 
incidence and severity based on symptoms observed on 
leaves and bunches (Supplementary file S3–S4). Among 
the fungal ASVs most strongly associated with low levels 
of P. viticola primary inoculum, we detected Trichoderma 
hamatum, R. babjevae in the topsoil, Bullera alba, A. pul-
lulans, C. infirmominiatum, Cystofilobasidium macerans 
in the phyllosphere, and Vishniacozyma dimennae in 
the endosphere (Supplementary Table  S10 and Supple-
mentary file S4). The most represented bacterial genera 
among the ASVs that could be assigned to the species 
level were Bacillus, Sphingomonas, Pseudarthrobac-
ter, Pseudomonas, Methylobacterium, and Streptomyces 

Fig. 5 Phyllosphere fungal taxa that vary in abundance with downy mildew incidence and severity. For each condition (high vs. low incidence 
and severity), we represented the 20 Amplicon Sequence Variants (ASVs) that were significantly associated with the condition according to at least 
two methods, that could be assigned at the species level, and that had the highest average association scores. The five methods used to identify 
these ASVs were ANCOM-BC2 [97], Maaslin2 [98], LinDA [99], ZicoSeq [100] and Random Forest Classification [111]. The results are based on data 
collected in 2022. ASVs belonging to Basidiomycete yeasts are highlighted in bold and marked with an asterisk (*)
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Fig. 6 Topsoil bacterial taxa that vary in abundance with downy mildew incidence and severity. For each condition (high vs. low incidence 
and severity), we represented the 20 Amplicon Sequence Variants (ASVs) that were significantly associated with the condition according to at least 
two methods, that could be assigned at the species level, and that had the highest average association scores. The five methods used to identify 
these ASVs were ANCOM-BC2 [97], Maaslin2 [98], LinDA [99], ZicoSeq [100] and Random Forest Classification [111]. The results are based on data 
collected in 2022. ASVs highlighted in bold and marked with an asterisk (*) also scored highest in the TITAN [108] analysis

Table 2 Bacterial taxa indicators of low downy mildew primary inoculum in topsoil

These ten bacterial ASVs increase significantly in abundance as the concentration of P. viticola DNA in the topsoil decreases, according to the Threshold Indicator Taxa 
Analysis (TITAN) method [108], and they have the highest z scores. These results are based on the 2022 topsoil data. Relative abundance (%) indicates the proportion 
of sequences assigned to the taxa relative to the total number of sequences in the dataset. Prevalence (%) indicates the percentage of samples where the taxa are 
present with at least one sequence. ASVs highlighted in bold also scored highest in the Differential Abundance Analysis

Bacterial ASV TITAN z score Relative abundance (%) Prevalence (%)

Exiguobacterium sibiricum ASV169 7.08 0.01 26.88

Streptomyces ambofaciens ASV915 6.73 0.02 69.38

Bacillus megaterium ASV21 6.72 1.23 92.50

Streptomyces albidoflavus ASV875 6.05 0.02 66.25

Arthrobacter globiformis ASV281 5.69 0.16 80.63

Arthrobacter globiformis ASV64 5.57 0.62 81.88

Pseudarthrobacter equi ASV1234 5.29 0.02 50.63

Arthrobacter globiformis ASV791 5.19 0.07 10.00

Arthrobacter globiformis ASV1353 5.11 0.03 10.00

Arthrobacter oryzae ASV45 4.97 0.89 91.88



Page 18 of 27Fournier et al. Environmental Microbiome           (2025) 20:37 

(Supplementary file S4). S. albidoflavus, S. ambofaciens, 
S. oralis, B. megaterium, A. globiformis and P. equi scored 
the highest in topsoil and phyllosphere (Table 2 and Sup-
plementary Table S11).

Similarly, analysis of the smaller dataset collected in 
2023 revealed 27 fungal ASVs (22 in the topsoil, 5 in the 
phyllosphere and none in the endosphere) and 68 bacte-
rial ASVs (57 in the topsoil, 12 in the phyllosphere and 
none in the endosphere) that were indicators of low P. 
viticola DNA concentrations in the topsoil (Supplemen-
tary file S4). Among these, 9 fungal ASVs and 26 bacte-
rial ASVs were also identified as indicators using the data 
from 2022 (Supplementary file S4).

Vineyard downy mildew incidence and severity can be 
predicted from microbiota composition, with soil fungal 
communities being the best predictor
According to hypothesis (iii), downy mildew incidence 
and severity could be predicted from microbiota data. 
The RF algorithm trained with topsoil samples collected 
in 2022 successfully predicted downy mildew incidence 
and severity for other topsoil samples collected in the 
same year. The lowest error rate was 15% ± 10. This was 
achieved using a data subset that included abundant 
fungal taxa aggregated to the species level (Fig.  7). The 
optimal mean mtry value was 35, indicating that a set of 
35 topsoil fungal species best predicted downy mildew 

Fig. 7 Random Forest algorithm performance in predicting grapevine downy mildew incidence and severity using topsoil microbiota composition. 
Each dot represents the mean sensitivity and precision obtained for a given subset of the topsoil microbiota data collected in 2022. The subsets 
differ in their composition (all fungi, all bacteria, all taxa or only abundant ones) and their level of taxonomic aggregation (from no aggregation 
of the ASVs to aggregation to the class level). The colored dots are those obtained with the optimal mtry value (i.e., the value that predicts 
low downy mildew incidence and severity with the lowest error rate). The bars represent the standard deviation over the various iterations 
of the cross-validation step. The lowest error rate is indicated as a percentage. The analysis and figure use the scripts developed by Cambon et al. 
[111]
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incidence and severity. The lowest error rates for the 
phyllosphere and leaf endosphere samples were much 
higher (34% ± 12 and 52% ± 19, respectively) than those 
for the topsoil samples (Supplementary Fig. S17). There-
fore, contrary to hypothesis (iv), the topsoil microbiota 
was a better predictor of the incidence and severity of 
leaf symptoms than the leaf microbiota.

In addition, our analyses revealed that the topsoil fun-
gal community can predict symptoms incidence and 
severity in the following year. The RF algorithm trained 
on topsoil samples from 2022 successfully predicted the 
incidence and severity of topsoil samples collected in 
2023. The lowest error rate was 6% ± 12, achieved using 
abundant fungal taxa aggregated at the genus level, and 
the mean mtry value was 12 (Supplementary Fig. S18). 
In comparison, phyllosphere and leaf endosphere micro-
bial communities were poorer predictors, with the lowest 
error rates of 35% ± 15 and 41% ± 17, respectively (Supple-
mentary Fig. S19).

Discussion
To the best of our knowledge, this study is the first to 
demonstrate a relationship between disease epidemi-
ology and the host microbiome in a plant pathosystem. 
To elucidate the interactions between plant diseases and 
the microbiome, studies typically compare the microbi-
omes of symptomatic and asymptomatic tissue samples 
[114–118]. The originality of our study lies in analysing 
the microbiome of healthy plants only. These plants were 
selected from plots with contrasting disease incidence 
and severity, according to long-term epidemiological 
data. We analyzed the microbiome of young, asymp-
tomatic leaves to test the hypothesis that the microbi-
ome that develops before the pathogen spreads to the 
leaves can influence or indicate the likelihood of disease 
development.

Our experimental design was specifically tailored to 
avoid potential confounding effects that may obscure 
the relationships between disease epidemiology and the 
plant microbiome [119]. To achieve this goal, we selected 
pairs of plots with contrasting disease incidence and 
severity over the years but otherwise as similar as pos-
sible (planted with the same variety, managed with the 
same practices, and geographically close to each other). 
We also repeated the sampling over two consecutive 
years to ensure robust results. Finally, we improved the 
taxonomic assignment of microbial taxa by sequencing a 
subset of the samples using long-read technology and by 
sequencing a collection of cultivable microorganisms iso-
lated from the biological material of the study [60]. Using 
this approach, we were able to improve the taxonomic 
assignments for 11% of the fungal ASVs and 10% of the 
bacterial ASVs. Obtaining the most accurate taxonomic 

assignments was critical, as the interpretation of our 
analyses, aimed at identifying candidates for disease bio-
control, largely depended on our ability to assign DNA 
sequences to specific species.

Using microbiome data as a predictor of disease incidence 
and severity
Recent research in human health indicates that micro-
biome data can enhance the accuracy of disease risk 
screening and predict dietary and lifestyle changes likely 
to slow disease progression in individuals [120, 121]. 
Such predictive approaches, based on microbiome data 
collected at the individual level, are still in their infancy 
in terms of plant health. Our study explored the potential 
of the plant microbiome for precision agriculture [122] 
by attempting to predict plot incidence and severity of a 
major disease (grapevine downy mildew caused by P. viti-
cola) based on topsoil and leaf microbiomes. Advances in 
human health and the promising results obtained in this 
study highlight the potential of using microorganisms to 
predict health outcomes, both in humans and plants.

In the present study, we showed that the topsoil micro-
biome in vineyards is an accurate predictor of downy mil-
dew incidence and severity, with an error rate of 15% for 
within-year predictions and 6% for between-year predic-
tions. Surprisingly, the best predictions of downy mildew 
incidence and severity, defined by symptoms observed 
on aerial organs (leaves and grapes), were obtained using 
topsoil fungal abundance as a predictor. In contrast, foliar 
communities (from the endosphere and phyllosphere) 
were poorer predictors, with error rates exceeding 30%. 
These results may be explained by the fact that the soil is 
the reservoir of microorganisms that colonize the aerial 
organs of grapevines [123, 124]. In this study, we sampled 
the vineyard microbiota early in the growing season. At 
this time of year, the topsoil contained both microorgan-
isms that can inhibit the germination of downy mildew 
oospores and microorganisms that can subsequently 
spread to grapevine leaves, where they can prevent infec-
tion by zoospores. With a different sampling strategy, 
the leaf microbiota might have been a better predictor. 
For instance, collecting leaf microbiota samples at dif-
ferent times throughout the season could have enhanced 
their predictive power, as the microbiota exhibits strong 
dynamics over time [125–127]. Performing predictions 
at the individual plant level might also increase the pre-
dictive power of the leaf microbiota. Indeed, a dysbiotic 
state, characterized by a temporary loss of the plant’s 
ability to regulate its microbiota at the individual level 
[128, 129], is considered the proximate cause of disease.

The greater richness of the soil microbiota compared 
to the leaf microbiota may also explain its higher predic-
tive power. This higher microbial richness enhances the 
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number of variables (i.e., ASVs) that can be used as pre-
dictors. Such richness is a biological reality that has been 
demonstrated in many other studies of plant microbiota 
[124, 127, 129–131]. Moreover, the difference in micro-
biota richness between soil and leaves could be exac-
erbated by molecular biology protocols. In our study, 
obtaining high-quality DNA in sufficient amounts was 
more challenging from leaves than from soil. We had less 
biological material from the phyllosphere, from which 
DNA was extracted from microbial pellets, compared 
to soil (100 mg lyophilized soil). Furthermore, grapevine 
leaves contain high levels of secondary metabolites, such 
as polysaccharides, polyphenols and tannins, which not 
only bind to nucleic acids during extraction, leading to 
their loss, but also act as PCR inhibitors, thus making 
leaves a challenging environment for microbial charac-
terization [132–134]. For the leaf endosphere, the DNA 
extracts likely contain more grapevine DNA than micro-
bial DNA, making amplification of target microbial DNA 
less effective and allowing the amplification of nontarget, 
contaminating sequences. This problem is particularly 
true for bacteria because we used degenerate primers to 
avoid chloroplast amplification of the 16S rRNA gene, 
which results in less effective amplification [111]. These 
methodological issues may explain the higher predictive 
power of the topsoil microbiota over the leaf microbiota, 
as well as the reason fungi were more effective predic-
tors than bacteria. These results parallel those of Cambon 
et al. [111], who used the same random forest algorithms 
(microranger R package) to assess the predictive power 
of the microbiota of several tree species. These authors 
reported that prediction error rates were inversely cor-
related with sequencing depth and emphasized that 
high-quality sequencing data are crucial for accurate 
microbiota-based predictions [111].

Relationship between microbiome diversity and disease 
incidence and severity
Increasing microbial diversity is generally considered 
beneficial for the health of organisms and ecosystems 
[135, 136]. Loss of microbial diversity is typically con-
sidered a marker of deteriorating health, as it may lead 
to loss of microbial functions and disruption of micro-
bial interaction networks [135]. However, contrary to 
these expectations, we did not find a strong relationship 
between microbial diversity and downy mildew incidence 
and severity. Only the leaf fungal communities sampled 
in 2022 had higher diversity in plots with low downy mil-
dew incidence and severity, which is consistent with the 
Biodiversity-Ecosystem Functioning (BEF) theory [11]. 
However, these results did not extend to the leaf bacte-
rial communities, nor to the soil fungal and bacterial 
communities. Furthermore, they could not be replicated 

in 2023, suggesting that microbiome diversity alone may 
not be a critical factor in downy mildew incidence and 
severity.

Microbial consortia that may interfere with the pathogen 
asexual stage
Plant pathogens often have complex life cycles that span 
multiple microbial habitats [137]. In the case of grapevine 
downy mildew, the asexual stage of the life cycle occurs 
in green organs during the growing season [12, 13]. Dur-
ing this period, P. viticola can interact with microor-
ganisms inhabiting both the phyllosphere and the leaf 
endosphere. In the present study, we show that inter-
actions with phyllosphere microorganisms, especially 
basidiomycete yeasts, are more likely than interactions 
with endophytes. Twenty species of epiphytic basidi-
omycete yeasts were associated with low downy mildew 
incidence and severity or low levels of primary pathogen 
inoculum. They belong to several genera, including Buck-
leyzyma, Bullera, Cystofilobasidium, Dioszegia, Eryth-
robasidium, Filobasidium, Itersonilia, Leucosporidium, 
Naganishia, Papiliotrema, Rhodotorula, Tausonia, and 
Vishniacozyma. The biocontrol activity of basidiomycete 
yeasts is well documented, as several species are already 
used as biocontrol agents (BCAs) against postharvest dis-
eases [138–140]. These yeasts regulate plant pathogens 
through various mechanisms, including competition for 
nutrients and space, secretion of toxins, enzymes, and 
volatile organic compounds (VOCs), parasitism, and 
indirect mechanisms, such as resistance induction [138–
140]. These mechanisms could be effective in controlling 
foliar diseases, including downy mildew.

The yeast species B. aurantiaca (previously classified as 
Rhodotorula aurantiaca) is particularly promising, as its 
higher abundance in low- incidence and severity than in 
high- incidence and severity plots was confirmed by all 
5 methods used. Moreover, this yeast species is known 
to reduce the incidence of blue mold in pears [141] and 
the severity of soft rot in peppers [142]. It has also shown 
promising results in the control of bacterial fruit blotch 
in melons [143, 144]. In addition, regarding the grape 
pathogens, B. aurantiaca liquid culture reduced the 
growth of Erysiphe necator by approximately 30% and 
significantly increased the number of collapsed conidia 
[145]. However, it had no effect on Botrytis cinerea [146].

According to our results, other yeast species that may 
act as a primary line of defense against P. viticola in 
young leaves include L. scottii, F. oeirense, V. carnescens, 
and B. alba. The yeast L. scottii has been identified as a 
good BCA against apple blue and gray mold caused by 
Penicillium expansum and B. cinerea, respectively [147]. 
F. oeirense and V. carnescens are known to inhibit B. 
cinerea development through VOCs production [148]. B. 



Page 21 of 27Fournier et al. Environmental Microbiome           (2025) 20:37  

alba has been shown to produce a lethal toxin that inhib-
its many yeast-like ascomycete and basidiomycete fungi 
and to have an excellent biocontrol effect on apple gray 
mold [149, 150].

Finally, we found that the ubiquitous ascomycete yeast 
A. pullulans is more abundant in vineyard plots with low 
downy mildew incidence and severity. The biocontrol 
activity of this yeast species is well known. In France, it 
is commercialized in products such as BOTECTOR®, 
CINERKIL, AUREO SHIELD, and Blossom Protect™. 
The presence of yeast consortia early in the season in the 
phyllosphere of low- incidence and severity plots seems 
to be a good indicator of plot downy mildew incidence 
and severity.

Microbial consortia that may interfere with the pathogen 
sexual stage
In contrast to the asexual stage, the sexual stage of the 
downy mildew life cycle occurs primarily in the soil dur-
ing fall and winter [12, 13]. Plasmopara viticola overwin-
ters as oospores in the topsoil, where it can interact with 
the multitude of microorganisms present in this biodiver-
sity reservoir. These belowground interactions have been 
largely overlooked, but our results suggest they exist, 
as we found several hundred fungal and bacterial ASVs 
that varied in abundance between plots with high and 
low downy mildew incidence and severity. Among these 
numerous ASVs, some may directly affect oospore sur-
vival and germination, while others are likely mere indi-
cators of soil conditions unfavorable to oospores [151].

In addition, we showed that the amount of P. viticola 
DNA in the topsoil is significantly lower in plots classi-
fied as having low downy mildew incidence and severity, 
based on epidemiological records of symptoms observed 
on leaves and bunches. This correlation between the 
amount of oospores in the topsoil and disease incidence 
and severity in aerial organs suggests that reducing pri-
mary pathogen inoculum in the soil through prophylaxis 
or soil microbial management [22, 152] could be an effec-
tive strategy for controlling disease epidemics. How-
ever, effective soil microbial management requires clear 
targets. Our analyses provide some insight into the soil 
microbial taxa that may serve as relevant targets.

Our analyses revealed several fungal species that 
were significantly more abundant in the topsoil of vine-
yard plots with low downy mildew incidence and sever-
ity compared to those with high incidence and severity. 
Among them, four species are known for their biocon-
trol activity against the asexual stage of downy mildew: 
Albifimbria verrucaria [153], A. alternata [154, 155], F. 
brachygibbosum [40, 156], and E. nigrum [34]. Our anal-
yses do not allow us to determine whether these fungal 
species detected in topsoil samples interact with downy 

mildew oospores (sexual stage) in the topsoil or if they 
first colonize young leaves and then interact with downy 
mildew zoospores (asexual stage).

In addition, our results revealed that several basidi-
omycetous yeasts were more abundant in the topsoil of 
plots with low downy mildew incidence and severity. 
Among them, four species were also more abundant in 
the phyllosphere of vineyard plots with low downy mil-
dew incidence and severity. All four are known for their 
biocontrol properties against plant pathogens: B. alba 
[149, 150], F. oeirense [157], P. laurentii [158, 159], and P. 
terrestris (previously classified as Cryptococcus lauren-
tii) [160, 161]. These congruent results between topsoil 
and young leaves indicate that both microbial habitats 
are connected by microorganism dispersal at the begin-
ning of the growing season, suggesting that management 
of the topsoil microbiota may influence the phyllosphere 
microbiota composition.

Filamentous fungi with known biocontrol proper-
ties were also found in higher abundance in the topsoil 
of vineyard plots with low downy mildew incidence 
and severity. These included Bjerkandera adusta [162], 
Issatchenkia orientalis [163–165], M. alpina [166], and 
two species of Trichoderma (T. lixii and T. virens). While 
the biocontrol properties of T. lixii have not been stud-
ied, T. virens is a well-established biocontrol agent with 
the ability to produce antibiotics, parasitize pathogenic 
fungi, and induce systemic resistance in plants [167, 
168]. Strains of Trichoderma are widely distributed in soil 
environments and can parasitize a wide range of plant 
pathogens, including the downy and powdery mildews 
of grapevines [169–172]. The higher abundance of these 
microorganisms in low- incidence and severity plots 
compared to high- incidence and severity plots supports 
our comparative approach.

Soil bacteria of the genus Streptomyces (including S. 
albidoflavus, S. ambofaciens, S. hygroscopicus, and S. 
xinghaiensis) were also associated with low downy mil-
dew incidence and severity. They stand out as promising 
candidates for the biocontrol of downy mildew because 
of their well-documented properties. Streptomyces spe-
cies have previously been identified as effective bio-
control agents against oomycete pathogens, including 
grapevine downy mildew, owing to their potent anti-
microbial properties [27, 39, 173, 174]. For example, 
Abdalla et  al. [30] demonstrated that khatmiamycin, a 
compound isolated from a terrestrial Streptomyces spe-
cies, exhibited inhibitory and lytic activities against 
the zoospores of P. viticola. Similarly, Islam et  al. [175] 
reported that extracts from several marine Streptomyces 
strains impaired zoospore motility and caused their lysis. 
Antimicrobial substances in the fermentation broth of 
the strain Streptomyces atratus PY-1 were also shown to 
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be effective against downy mildew by damaging sporan-
gia and sporangiophores [39]. Finally, El-Sharkawy et al. 
[176] reported that Streptomyces viridosporus HH1 and 
Streptomyces violaceus HH5 can reduce the severity of 
downy mildew in the field. These results suggest that soil-
borne microorganisms could prevent the infection of aer-
ial parts by P. viticola. During the winter season, the soil 
could act as a reservoir for protective strains that would 
colonize the aerial parts of the vines later in the growing 
season.

Environmental and anthropogenic drivers of microbiota 
composition
According to our results, the microbial taxa that varied 
in abundance between the low- and high- incidence and 
severity plots were both rare and abundant. Their rela-
tive abundance ranged from approximately 0.00006% to 
14% of the total number of sequences. Increasing the 
abundance of rare taxa of interest through inoculation 
with microbial strains or consortia seems feasible, but 
increasing the abundance of already abundant taxa that 
may be more challenging. In the latter case, microbiota 
management could rely on changes in vineyard manage-
ment practices. Our analysis provides some insight into 
the practices that may have an impact on the resident 
microbiota.

Our analyses revealed that grape variety had small but 
significant effects on the microbiota composition. The 
significant influence of grape variety on both leaf and soil 
microbiota is consistent with findings from other stud-
ies [129, 177–182]. This is an interesting result, as geno-
type can influence resistance to downy mildew [183] and 
may also affect the recruitment of microorganisms with 
biocontrol properties that could protect the plant from 
pathogens.

In addition, our results suggest that reducing the fre-
quency of fungicide treatments could alter the composi-
tion of the microbiota and increase microbial diversity. 
The absence of fungicide application increased micro-
bial diversity in the soil, as documented in other studies 
[184–186]. It also increased microbial diversity in the 
phyllosphere the following spring, probably due to the 
dispersal of microorganisms from the soil to the leaves. 
Finally, proximity to the plot edge increased microbial 
diversity in the topsoil, phyllosphere, and endosphere. 
These results parallel those of Ricono et  al. [187], who 
reported a decrease in diversity with increasing distance 
from the edge in the endosphere of wheat roots. In vine-
yard agroecosystems, several studies have demonstrated 
the importance semi-natural habitats in enhancing bio-
diversity and farm productivity through its influence on 
pest control services provided by biological control [188]. 

These findings suggest that edge management may be an 
option to increase microbial diversity in vineyard plots.

Conclusion and perspectives
We identified bacterial and fungal taxa naturally occur-
ring in vineyard environments that may be promising 
candidates for the biocontrol of downy mildew. These 
microorganisms may play a role in disrupting either the 
sexual or asexual stages of the pathogen, offering poten-
tial alternatives to conventional control methods. Specifi-
cally, fungi from the genera Rhodotorula, Buckleyzyma, 
Vishniacozyma, and Filobasidium may target the asexual 
stage, while fungi from Trichoderma, Mortierella, and 
Papiliotrema could affect the sexual stage. Additionally, 
bacteria from the genera Arthrobacter, Bacillus, Strepto-
myces, and Pseudarthrobacter may play a role in control-
ling the sexual stage. The results of this study open the 
door to further research aimed at assessing the efficacy 
and sustainability of these biocontrol agents under differ-
ent climatic conditions, soil types and vineyard manage-
ment practices. After isolation, a deeper understanding 
of their mode of action and interactions with the patho-
gen will be essential for the development of more robust 
and environmentally friendly integrated management 
strategies to protect vineyards from downy mildew. 
Our study also provides insights into vineyard manage-
ment practices that could help harness vineyard resident 
microbiota. Our results suggest, for instance, that edge 
management may impact microbial diversity. Addition-
ally, we found that specific soil microbial taxa can predict 
disease incidence and severity with an average accuracy 
of 85%. This surprising finding, given that the disease 
is airborne, highlights the potential for integrating soil 
microbiota data into disease surveillance strategies [189].
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