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Abstract
Background  The variation in fungal community composition within a single habitat space has been extensively 
studied in forest ecosystems. However, the spatial and temporal distribution of fungi across contiguous habitats, 
particularly at a local scale and in tropical regions, remains underexplored. In this study, we examined the fungal 
community composition across multiple habitats proximal to each other over two seasons in seven Fagaceae species 
in Taiwanese broadleaf forests. We tested how local spatial scale and habitat influence community assembly.

Results  Using a metabarcoding approach, we sequenced ITS2 regions from 864 samples collected from four 
distinct habitats—leaves, twigs, litter, and soil. We identified 11,600 fungal amplicon sequence variants (ASVs), with 
community composition differing significantly between habitats proximal to each other. Generalized dissimilarity 
modeling (GDM) revealed that spatial distance, interacting with precipitation, was the strongest predictor of 
fungal turnover, particularly in the phyllosphere. Normalized Stochasticity Ratio (NST) analyses further highlighted 
contrasting assembly processes, with deterministic influences dominating in the phyllosphere habitat, while 
stochasticity prevailed in soil and litter. Random forest analysis accurately classified habitats based on ASVs’ relative 
abundances, with strong predictors were mostly habitat-specific ASVs prevalent in soil. Misclassified samples were 
due to secondary contact of fungi between adjacent habitats. Co-occurrence network analysis revealed more 
complex and deterministic networks in leaf and twig habitats, while soil was driven by stochastic processes and 
contained most habitat-specific ASVs. A Cladosporium sp. emerged as a keystone species, maintaining network 
stability across forests.

Conclusion  This study reveals how local spatial variation and habitat shape distinct fungal communities in tropical 
forests, with deterministic processes dominating in some habitats and stochasticity playing a key role in others. We 
show extremely high turnover in fungal community are present over very short distances and that local fungal taxa 
are strong habitat predictors. These findings highlight the importance of studying coexisting habitats to gain a deeper 
understanding of fungal biogeography and ecosystem function.
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Background
Forests are highly heterogeneous ecosystems, compris-
ing a diverse array of distinct habitats. Even at the scale 
of individual trees, spatial heterogeneity is evident with 
various compartments ranging from fresh leaves to soil, 
each supporting distinct fungal communities. These 
fungi provide niche-specific processes as well as inter-
face-mediated responses, which collectively contribute to 
the health and functioning of the forest ecosystem [1–6]. 
For example, phyllosphere fungi play essential roles in 
nutrient cycling and organic matter decomposition fol-
lowing the fall of leaves, transforming materials into 
absorbable forms for plants [7, 8]. While numerous stud-
ies have explored fungal diversity within specific habitats 
on a global scale [9, 10], investigating the spatiotemporal 
patterns of fungal communities across multiple proximal 
habitats at a local scale can reveal how these communi-
ties assemble, maintain, or partition themselves. Such an 
approach can yield crucial insights into the biogeography 
of microorganisms and ecosystem processes [11, 12].

Spatiotemporal variability of fungal communities has 
been extensively studied in other systems, particularly 
in soil environments where mycorrhizal fungi play key 
roles [11]. A nearly universal biogeographical pattern 
observed is the decay in community similarity with spa-
tial distance [13, 14]. This distance-decay relationship 
can result from dispersal limitation, whereby the disper-
sal of species tends to decrease as the physical distance 
from the source increases [15]. In addition, geographi-
cally proximate locations often exhibit comparable envi-
ronmental conditions, which serve to reinforce species 
similarity within these regions. Furthermore, the impact 
of these drivers on fungal communities varies across dif-
ferent habitats, leading to distinct patterns of community 
assembly [16]. These effects are inherently dependent on 
the spatial scale of the investigation [17]. At smaller spa-
tial scale, stochastic processes may be dominant where 
environments are more homogenous. However, as spa-
tial distance increases, environmental heterogeneity also 
increases (e.g., variations in vegetation, habitat chemistry, 
and climate), and community composition may then be 
more strongly determined with this heterogeneity [18]. 
Understanding whether community assembly is shaped 
by neutral processes or deterministic factors like niche 
differentiation is key to unraveling the spatiotemporal 
dynamics and ecological drivers of fungal communities.

Fungal community composition can vary significantly 
across different habitats of forest foreground, such as 
leaves, twigs, topsoil, and litter, even when these habi-
tats are in close proximity. These habitats differ exten-
sively in environmental factors such as chemical nutrient 
availability, but at the same time are connected via co-
inhabiting fungi [19] and microbial-mediated ecotones 
[6]. Litter, for instance, can be particularly dynamic and 

experiences substantial seasonal changes even across 
very small distances [20] driven by the continuous influx 
of fresh litter [12]. The litter-soil interface is essential 
for nutrient cycling and organic matter decomposition, 
impacting soil fertility and plant health. Examining the 
fungal community of the forest ecosystem as a whole 
would enable us to quantify the diversity differences 
between different environments that were otherwise 
biased by methodologies [13] and to investigate the rela-
tionship between these environments and delineate eco-
system processes that affect single or multiple habitats 
simultaneously [19].

Tropical and subtropical forests, which cover 56% of 
the global forest area and support 42.8% of the world’s 
tree species, are among the most biodiverse ecosystems 
[19, 21]. Taiwan is a continental island with 60.7% of its 
land area covered by forests [22], which is more than 
double the global average of 30.2% and it ranks as the 
fifth highest nation in terms of tree density [23]. In par-
ticular, the broadleaf forests are home to a diverse range 
of Fagaceae plant and microbial species [24], yet studies 
on the mycobiome of Fagaceae species remain limited. 
Oak trees, which are keystone species in many ecosys-
tems, play a crucial role in maintaining forest structure 
and function [25–27]. Despite the ecological importance 
of these trees, there has been a paucity of research on the 
fungal communities associated with the various habitats 
surrounding them, apart from mycorrhizal or soil fungi 
[28, 29]. Given Taiwan’s rich biodiversity, varied envi-
ronmental conditions, and designation as a priority area 
for fungal conservation [30], it serves as an ideal place 
for studying fungal communities. Understanding the 
mycobiome of Fagaceae species in Taiwanese forests can 
provide valuable insights into the ecological processes 
governing these ecosystems and contribute to more 
effective forest management and conservation strategies.

In this study, we investigated fungal diversity across 
closely situated habitats—leaves, twigs, soil, and litter— 
associated with seven Fagaceae species in two broadleaf 
forests and a botanical garden in Taiwan to understand 
how these different environments influence the assem-
bly and variability of fungal communities at a very local 
scale. Using a metabarcoding approach, we sequenced 
ITS3/ITS4 amplicons from 864 samples collected across 
four different habitats: leaves, twigs, litter, and topsoil 
from the same trees. By examining the spatiotemporal 
variation in mycobiomes at two time points, we sought 
to determine the influence of factors such as spatial dis-
tances, habitat type, season, and host species on fungal 
community composition. Our comprehensive analysis 
highlights the remarkably high turnover of fungal com-
munities in the foreground of forests at small spatial 
scales, and underscoring the significant role of environ-
mental factors in shaping these communities.
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Methods
Sample collection
To investigate the spatiotemporal variations in the for-
est mycobiomes, we collected samples from leaves, 
twigs, litter and topsoil of 38 trees belonging to seven 
Fagaceae species (Quercus stenophylloides n = 14, Quer-
cus glauca n = 7, Quercus morii n = 2, Quercus pachy-
loma n = 3, Castanopsis fargesii n = 2, Lithocarpus 
hancei n = 5, Lithocarpus glaber n = 5) at two locations in 
Nantou County (Puli Township and Ren’ai Township) 
characterized by subtropical broadleaf forest domi-
nated by Fagaceae and Lauraceae species [31], as well as 

the Fushan Botanical Garden in Yilan County, Taiwan 
(Fig. 1a and b). The Fushan Botanical Garden, established 
for the conservation and study of Taiwan’s subtropical 
forest ecosystems, features curated plantings of Faga-
ceae species and serves as a managed area with minimal 
human disturbance beyond its original design, preserving 
a semi-natural ecosystem. Unlike the Fushan Subtropi-
cal Forest Dynamics Plot (FDP), which is a natural forest 
research site, the botanical garden reflects a controlled 
environment [32]. Samples were collected at two time 
points per location, with Nantou samples harvested in 
April and October 2022, and Fushan samples in July and 

Fig. 1  Sampled broadleaf forests in Taiwan surveyed for fungi associated with Fagaceae species. (a) Map of sampling sites. (b) Tree distributions in the 
Puli site. (c) A schematic diagram showing leaf, twig, leaf litter, and soil were sampled triplicates in each tree
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December 2022. The Fushan samples were designated as 
managed Fagaceae woodlands.

For each tree, triplicate samples of each habitat were 
obtained from different sides of the tree (Fig.  1c). The 
twigs, comprising approximately 20–30 leaves, were 
pruned with a sterilized tree lopper and placed into seal 
bags, with the leaves and twigs separated during labora-
tory preprocessing. Leaf litter (comprising 20–45 leaves) 
was sampled from the organic layer of soil, consisting 
mostly of late-stage decomposition material [33], while 
topsoil was sampled at a depth of 0–10 cm using 50 ml 
falcon tubes after the organic layer (“O” horizon) was 
removed. Originally 18 trees were chosen per survey 
site (a total of 36), but due to decay, two additional trees 
were substituted (SPA0446 and SPA0457 were replaced 
with SP0472 and SPA0487, respectively). A total of 864 
samples were collected. All samples were refrigerated at 
4  °C until extraction of genomic DNA (Supplementary 
Table S1). Abiotic variables associated with survey sites 
were collected from Climate Observation Data Inquire 
Service, Taiwan (Supplementary Table S2; ​h​t​t​p​s​:​/​/​c​o​d​i​s​.​
c​w​a​.​g​o​v​.​t​w​/​​​​​)​.​​

Sample preprocessing and DNA extraction
The preprocessing steps for leaf, twig, and leaf litter sam-
ples followed the protocols detailed in our previous study 
[24]. The samples were cut into appropriately sized pieces 
to fit in the 500 ml bottles and suspended in 250 ml 1X 
PBS buffer (pH 7.4) containing 0.1% Tween 20. The sus-
pension was subjected to sonication at 40 kHz for 20 min 
(DELTA ULTRASONIC CO. LTD, Make: DELTA, Model: 
DC400) and then shaken at 120 rpm for 1 h (FIRSTEK, 
Model: S-101) at room temperature. To remove large 
debris, the suspension was filtered through a 0.25  mm 
sterile mesh. Surface-associated genomic DNA was col-
lected by passing the suspension through 0.22  μm PES 
membranes in a filtration cup (Jet Bio-Filtration Co., Cat. 
FPE214250). As a negative control of the preprocessing 
step, three samples with no substrate were processed for 
each batch to access the background contamination. This 
method primarily captures epiphytic fungi, targeting sur-
face-associated microbes. Genomic DNA was extracted 
from the membranes using the DNeasy PowerWater kit 
(QIAGEN; Cat. 14900-50-NF) following the manufactur-
er’s instructions.

The topsoil samples were sieved using 2  mm steel 
mesh to remove plant debris, insects and rocks aim-
ing to capture the entire fungal community within 
the soil. Genomic DNA was extracted from approxi-
mately 0.25  g of soil using the DNeasy PowerSoil Pro 
kit (QIAGEN, Cat. 47014) as instructed by the manu-
facturer. Homogenisation was performed with a Precel-
lys 24 Touch homogeniser (Bertin Technologies, Cat. 
P002391-P24T0-A.0) at 5000 rpm for two cycles of 90 s, 

with a 15-second pause between cycles. The extracted 
DNA was quantified with Invitrogen Qubit 4 fluorometer 
(Invitrogen) and NanoDrop 1000 (ThermoFisher) and 
stored at -20 °C until library preparation.

Amplicon library construction and sequencing
Amplicon libraries were constructed as previously 
described [34] using the forward primer ITS3ngs 
(5-CANCGATGAAGAACGYRG-3’) and reverse primer 
ITS4ngsUni (5’-CCTSCSCTTANTDATATGC-3’) [35, 
36] to amplify the ITS2 region. The PCR mixture con-
tained 50 ng of DNA extract, 2 µl of each 10 µM primer, 
8 µl 5x HOT FIREPol Blend Master Mix (Solis Biodyne, 
Cat. 04-27-00115), 1  µl of 25 mM MgCl2 and ddH20 to 
40 µl. Extracted genomic DNA of Saccharomyces kudria-
vzevii, S. paradoxus and S. cerevisiae were used as single-
species sample included as positive controls to assess 
the false positives in the sequencing and analysis. The 
thermal cycling conditions consisted of an initial dena-
turation at 95  °C for 12  min, followed by 35 cycles of 
denaturation at 95 °C for 20 s, annealing at 55 °C for 30 s, 
and extension at 72  °C for 1  min, finishing with a final 
cycle at 72 °C for 7 min. Biological replicates intended to 
be merged for sequencing were first pooled using equi-
molar dilutions of each. Amplicons were normalized to 
equal DNA quantity (approximately 25 ng) using Sequal-
Prep™ Normalization Plate Kit (Invitrogen, ID: A1051001) 
according to the manufacturer’s instructions before pool-
ing. The pooled library was concentrated to 10 ng/µl 
using AMPure XP (Beckman Coulter, ID: A63881). Each 
batch produced two plates of the library. Libraries were 
sequenced using the Illumina Miseq PE300 sequencing 
platform with equal molar pooling and 20% Phix spike-
in. The sequencing was conducted by the NGS High 
Throughput Genomics Core of the Biodiversity Research 
Center, Academia Sinica, Taiwan.

Statistical analyses
The raw sequencing data were imported and demulti-
plexed using sabre (v1.0; ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​n​a​j​o​​s​h​​i​/​s​a​
b​r​e) allowing a 1  bp mismatch. Sequencing quality was 
examined using FastQC (v0.11.9; ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​s​-​a​
n​​d​r​​e​w​s​/​F​a​s​t​Q​C). Reads without primer sequences were 
detected and discarded with usearch (v11.0.667) [37]. 
Primer sequences were trimmed using Cutadapt (v4.4) 
[38]. The filtered and trimmed sequences were pro-
cessed with the Qiime2 (v2023.5.1) [39] pipeline to fil-
ter reads with a quality threshold of Qscore > 20 and to 
denoise into amplicon sequence variants (ASVs) based 
on algorithm of DADA2 [40]. Taxonomy for the ASVs 
was assigned using constax (v2.0.18) [41] with the UNITE 
Fungal database (v9.0) [42], and the trophic mode was 
annotated using FUNGuild (v1.2) [43].

https://codis.cwa.gov.tw/
https://codis.cwa.gov.tw/
https://github.com/najoshi/sabre
https://github.com/najoshi/sabre
https://github.com/s-andrews/FastQC
https://github.com/s-andrews/FastQC
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Data processing and analysing as following were per-
formed in the R-studio environment (v2024.4.1.748) 
[44]. Taxonomy levels were updated using package rgbif 
(v3.7.7) [45]. Background reads were subtracted based on 
the median read counts of ASVs observed in all negative 
controls. ASVs with relative abundances below 0.1% in 
each sample were filtered out. This cutoff was determined 
based on the relative abundance of contaminant ASVs 
identified in the positive controls, reflecting the threshold 
at which potential contaminants, including those aris-
ing from tag-switching or index-bleed, were observed. 
Preprocessed sequencing data (averaging 23,149 reads 
per sample) were rarefied to 5,000 reads for all analyses 
except co-occurrence network analysis, using phyloseq 
[46]. The preprocessing step excluded 57 samples. Fig-
ures were generated using ggplot2 (v3.4.2) [47]. The sam-
pling locations were annotated using ggspatial (v1.1.9; ​h​
t​t​p​​s​:​/​​/​C​R​A​​N​.​​R​-​p​​r​o​j​​e​c​t​.​​o​r​​g​/​p​​a​c​k​​a​g​e​=​​g​g​​s​p​a​t​i​a​l), metR 
(v0.14.0; ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​e​l​i​o​​c​a​​m​p​/​m​e​t​R) and ggrepel 
(v0.9.3; ​h​t​t​p​​s​:​/​​/​C​R​A​​N​.​​R​-​p​​r​o​j​​e​c​t​.​​o​r​​g​/​p​a​c​k​a​g​e​=​g​g​r​e​p​e​l). ​S​
t​a​t​i​s​t​i​c​a​l significance test of the alpha diversity index was 
performed using HSD.test function in agricolae package 
(v1.3.7; ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​m​y​a​s​​e​e​​n​2​0​8​/​a​g​r​i​c​o​l​a​e). ASVs 
present in at least 25% of samples within a single habitat 
were classified as habitat-specific, while those occurring 
in 25% of samples across multiple habitats (e.g., 25% in 
both soil and leaf samples) were designated as ubiquitous 
ASVs. The UpSetR package was performed to visualise 
the habitat-specific and ubiquitous ASVs through the 
environments (v1.4.0; ​h​t​t​p​​s​:​/​​/​C​R​A​​N​.​​R​-​p​​r​o​j​​e​c​t​.​​o​r​​g​/​p​a​c​k​
a​g​e​=​U​p​S​e​t​R).

Sample heterogeneity was calculated with the vegdist 
function from the vegan package (v2.6-4; ​h​t​t​p​​s​:​/​​/​C​R​A​​N​.​​
R​-​p​​r​o​j​​e​c​t​.​​o​r​​g​/​p​a​c​k​a​g​e​=​v​e​g​a​n), focusing on samples with 
triplicates that underwent separate sequencing. The rel-
ative abundance of the ASV in the samples were trans-
formed by square-rooting transformation. Comparisons 
were divided into three categories: ‘Within tree’ indicated 
the comparison between biological replicates of the same 
tree, ‘Within site’ referred to comparing samples from 
different trees in the same sampling sites and season and 
‘Between sites’ showed the comparison of samples from 
different trees and sites in the same season (Spring of Puli 
vs. Spring of Nantou; Fall of Puli vs. Fall of Nantou). To 
examine the spatial and environmental predictors driving 
fungal community turnover, we employed Generalized 
Dissimilarity Modeling (GDM) using the gdm pack-
age (v1.6) [48] in R. Pairwise Bray-Curtis dissimilarities 
with square-root transformation of fungal communi-
ties in each habitat were used as the response variable, 
with geographic distance (derived from GPS coordi-
nates), precipitation and temperature across multiple 
temporal scales (day of collection, three days, five days, 
seven days, 14 days, and 30 days) as predictor variables. 

Predictor variables were transformed into I-spline curves 
with function plotUncertainty with 1,000 times permu-
tation, which models non-linear relationships and cap-
tures variations as turnover rates along environmental 
gradients [49]. P-values for each predictor were assessed 
using function gdm.varImp with 1,000 iterations of per-
mutation, providing 95% confidence intervals for the 
predictors.

The normalized stochasticity ratio (NST) based on 
Jaccard distance was calculated to assess mycobiome 
assembly processes using the NST package (v3.1.10) 
[48]. A random forest model was used to classify sam-
ples into their respective habitats and to analyse ASV 
importance based on the mycobiome composition using 
package randomForest (v4.7.1.1; ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​c​
r​a​n​​/​r​​a​n​d​o​m​F​o​r​e​s​t​/). Optimized parameters, ​i​n​c​l​u​d​i​n​
g ntree, train/test ratio, mtry and minimum node size, 
were tuned using package ranger (v0.16.0; optimized 
parameters were as followed: mtry = 50; minimum node 
size = 4; ntree = 1,383) [49]. A total of 679 samples were 
transformed to relative abundance and subsequently 
divided into training set and testing set with an 80/20 
ratio using function createDataPartition from package 
caret (v6.0.94) [50]. Cross-validation was used to prevent 
model overfitting, and model discrimination was visual-
ized with the pROC (v1.18.5) [51] package.

Network analysis
Triplicate samples from each habitat were initially pooled 
by rarefying to the minimum read depth among the trip-
licates and summing the rarefied reads. Leaf, twig, and 
litter samples were rarefied to 15,000 reads, while soil 
samples were rarefied to 10,000 reads. ASVs present 
in more than 50% of the habitat samples were retained 
by applying a 50% prevalence threshold to the rarefied 
data. Correlation indices were calculated using FastSpar 
(v1.0.0) [52, 53] with 100 iterations and filtered based on 
both significance (false positive adjusted p-value < 0.05) 
and strength (SparCC ≥ 0.6 or SparCC ≤ -0.6). Separate 
co-occurrence networks were constructed for each site, 
season and habitat type. The co-occurrence networks 
were visualized using igraph [54] with modularity and 
module identified using the clustgreedyer_fast_function 
[55]. To identify putative keystone taxa, we estimated the 
Zi (within-module degree z-score) and Pi (participation 
coefficient) values for each node using function within_
module_deg_z_score and part_coeff of brainGraph 
(v3.0.0; ​h​t​t​p​​s​:​/​​/​C​R​A​​N​.​​R​-​p​​r​o​j​​e​c​t​.​​o​r​​g​/​p​​a​c​k​​a​g​e​=​​b​r​​a​i​n​G​r​a​p​
h) package, respectively. Nodes with Zi greater than 2.5 
were defined as modular hubs; those with Pi more than 
0.62 were identified as connectors; and nodes that satis-
fied both conditions of Zi ≥ 2.5 and Pi ≥ 0.62 were classi-
fied as network hubs.

https://CRAN.R-project.org/package=ggspatial
https://CRAN.R-project.org/package=ggspatial
https://github.com/eliocamp/metR
https://CRAN.R-project.org/package=ggrepel
https://github.com/myaseen208/agricolae
https://CRAN.R-project.org/package=UpSetR
https://CRAN.R-project.org/package=UpSetR
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://github.com/cran/randomForest/
https://github.com/cran/randomForest/
https://CRAN.R-project.org/package=brainGraph
https://CRAN.R-project.org/package=brainGraph
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Results
Fungal diversity across habitats and seasons in Taiwanese 
Fagaceae forests
We surveyed 38 trees from seven Fagaceae species across 
two natural Taiwanese broadleaf forests and Fushan 
botanical garden (Fig.  1). The survey was conducted at 
two time points and encompassed four habitats: leaf, 
twig, leaf litter, and topsoil, with triplicates for each tree 
resulting in a total of 864 samples (Fig. 1c). By amplify-
ing and sequencing the ITS2 region, we quantified the 
relative abundances of mycobiomes across habitats 
and seasons. After quality filtering, denoising, merging 
and removing false positives, we obtained 17,222,990 
sequences from an initial 46,317,215 paired reads and 
classified them into 11,600 amplicon sequencing variants 
(ASVs), averaging 69 ASVs and a median relative abun-
dance of 0.40% per sample. The samples were further rar-
efied to 5,000 reads for subsequent analyses.

The ASVs were classified into seven phyla with 5.8% 
remaining unclassified. The dominant fungal phylum was 
Ascomycota (56.3%), followed by Basidiomycota (26.9%), 
Zygomycota (10.6%), Glomeromycota (0.17%), Chytridio-
mycota (0.33%), and Blastocladiomycota (0.02%) (Supple-
mentary Fig. S1). ASV1 was identified belonging to the 
Cladosporium genus and was the most dominant ASV 
present in 330 out of 679 samples with an average relative 
abundance of 5.48% (Fig. 2a). This ASV was particularly 
prevalent in leaf litter and leaves, with average relative 
abundance of 7.0% and 5.2%, respectively.

Alpha diversity, assessed using the Chao1 and Shan-
non diversity indices, revealed significant variation 
across habitats, with higher richness and evenness in lit-
ter (73 ± 27 ASVs; mean ± s.d.) compared to twig (65 ± 24 
ASVs) and leaf (64 ± 26 ASVs) (Fig.  2b and Supple-
mentary Fig. S2), while soil exhibited the lowest diver-
sity (58 ± 22 ASVs). Seasonal variation also emerged as 
another significant driver of fungal communities (PER-
MANOVA; R2 = 0.09, P < 0.001). For instance, at the 
Fushan Botanical Garden, fungal richness and evenness 
declined in winter compared to summer, while in Nan-
tou and Puli, Chao1 richness increased in fall compared 
to spring, though evenness remained stable (Fig. 2b and 
Supplementary Fig. S2a). There were no significant dif-
ferences in both Chao1 and Shannon indices at the host 
species level, suggesting that host identity at a genus level 
may not play a major in determining fungal diversity in 
Fagaceae broadleaf forests. An exception occurred in Puli 
during the fall, where alpha diversity varied among host 
species, with Castanopsis fargesii exhibiting the highest 
diversity (Supplementary Fig. S2b). These findings sug-
gest that while habitats and season are key determinants 
of fungal community diversity, host species may exert a 
more localized or context-dependent influence on alpha 
diversity. (Supplementary Fig. S2b).

Spatiotemporal variation in fungal diversity and niche 
assembly of broadleaf forests
To investigate the spatial heterogeneity of fungal commu-
nities, we calculated the Bray-Curtis (BC) dissimilarity 
index for samples collected from the same trees, less than 
2 m apart (Figs. 1c and 3a). Fungal community from the 
same habitat showed high dissimilarity even within indi-
vidual trees (median BC = 0.65, Fig. 3a). Samples originat-
ing from the same habitats were more similar than those 
between different habitats (median BC = 0.65 vs. 0.94, 
P < 0.05, Tukey’s HSD; Fig. 3a). Site-specific factors influ-
enced fungal turnover. For example, two Quercus morii 
and one Q. stenophylloides trees located in Rueiyan of the 
forest in Nantou exhibited the lowest BC values (Supple-
mentary Fig. S3). Seasonal variation also contributed to 
higher BC dissimilarity, as evident in samples collected 
across different seasons (median BC = 0.85, Supplemen-
tary Figure S4). Among habitats, leaves exhibited the 
lowest dissimilarity (Fig. 3a and Supplementary Fig. S5). 
Overlap between litter vs. twig and litter vs. leaf, i.e., 
exhibiting low BC values, was also observed.

When considering distances between trees from the 
same forest site, samples from the same habitats remained 
highly dissimilar (median BC = 0.88; Fig. 3b) and a clear 
distance-decay relationship was observed (Fig.  3c). This 
relationship was stronger among trees of the same spe-
cies compared to those of different species (Spearman’s 
ρ = 0.42 vs. 0.12, respectively; Fig. 3c and Supplementary 
Fig. S6), suggesting that host species played a significant 
role in determining fungal community composition at 
shorter distances, whereas communities between dis-
tantly located trees will be highly dissimilar, even if they 
belong to the same species. The distance-decay relation-
ship was most pronounced in leaf vs. leaf comparisons, 
especially in Nantou during the Fall and Spring seasons 
(Spearman’s ρ = 0.43 and 0.53, respectively, Supple-
mentary Fig. S7). In contrast, soil vs. soil comparisons 
displayed weaker or insignificant distance-decay relation-
ships. As expected, samples from different habitats, trees 
and sites exhibited the greatest dissimilarity (median 
BC = 0.99; Supplementary Fig S8), suggesting that distinct 
habitat preferences strongly influence fungal commu-
nity composition, limiting colonization across habitats 
despite physical proximity. In addition, we analyzed the 
normalized stochasticity ratio (NST) to evaluate the bal-
ance between stochastic and deterministic processes in 
fungal community assembly across different habitats and 
seasons (Fig. 3d). Twigs exhibited the lowest stochastic-
ity (mean NST = 0.56), followed by leaves and litter, while 
soil had the highest stochasticity (mean NST = 0.68).

Environmental predictors of forest mycobiome
Fungal composition differences were analyzed using 
Bray-Curtis distance and visualized through Non-metric 
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Multidimensional Scaling (NMDS) and Principal Coordi-
nates Analysis (PCoA), with the first two principal com-
ponents in PCoA explaining 14.3% of the variation in the 
dataset (Fig. 4 and Supplementary Fig. S9). Both NMDS 
and PCoA analyses revealed that samples collected 
from the same location but during different seasons sig-
nificantly cluster together (PERMANOVA R² = 0.051, 
P < 0.001). Among habitats, NMDS analysis showed clear 
distinctions between soil and the other three habitats 

(leaf, litter, twig) (PERMANOVA R² = 0.037, P < 0.001) 
(Fig.  4a). Although host species had a significant influ-
ence on the fungal composition, the effect was relatively 
minor (PERMANOVA R² = 0.035, P < 0.001). Despite 
similar altitudes between the Fushan botanical garden 
(625–660  m) and the Puli forest (593–774  m), samples 
from these sites clustered separately.

Given the significant role of seasonality in shaping 
mycobiome composition, we explored the influence of 

Fig. 2  Fungal community diversity (a) The 10 most dominant ASVs’ relative abundance across samples. Each dot represents one sample, the color indi-
cates the host species and the shape denotes the collection seasons; (b) Alpha diversity across habitats and seasons calculated using Chao1 index. The 
significant difference test was performed using Tukey’s HSD test, with different letters indicating statistically significant differences (P < 0.05). Dot color 
represents host species
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Fig. 3  Dissimilarity and ecological stochasticity in the fungal community associated with Fagaceae species across habitats and geographical distance 
(km). Bray-Curtis dissimilarity of samples across habitats from the same tree (a) and different trees in one site (b). The colors indicate the habitat pairwise 
of two samples. (c) Distance-decay relationship of sample similarity of the same habitat between tree host species. Spearman’s rank correlation coefficient 
(ρ) and the corresponding significance are provided to demonstrate the strength and significance of the distance-decay relationship. (d) Community 
assembly processes are calculated by normalized stochasticity ratio (NST) based on Jaccard distance among habitats. The letters represent the statistically 
significant differences as estimated by Tukey’s HSD test (P < 0.05)
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climatic variables, focusing on relative humidity, tem-
perature, and precipitation. Among these, monthly pre-
cipitation emerged as the most influential in determining 
mycobiome composition (PERMANOVA R² = 0.016, 
P < 0.001). PCoA based on Bray-Curtis distance, showed 
that PC1 (8.7%) effectively separated soil samples from 
the other habitats, while PC2 (5.6%) distinguished sam-
ples based on monthly precipitation levels, with higher 
precipitation associated with distinct fungal commu-
nities (Supplementary Fig. S9b). In contrast, daily pre-
cipitation had a weaker effect on fungal composition 
(PERMANOVA, R² = 0.007, P < 0.001), suggesting that 
prolonged rainfall, rather than short-term precipitation, 

plays a more critical role in gradually influencing fungal 
community composition.

We applied Generalized Dissimilarity Modeling 
(GDM) to quantify the spatial and environmental predic-
tors driving fungal community turnover across habitats 
(Fig.  5), which explained 39.1–57.5% of the variation in 
dissimilarity (Supplementary Table S3a). Spatial distance 
emerged as the strongest determinant of fungal com-
munity dissimilarity when considered independently, 
with turnover occurring over small to intermediate spa-
tial scales (Fig. 5a). Twig and leaf habitats exhibited the 
steeper I-spline gradients, indicating that fungal turn-
over in these habitats were more sensitive to geographic 

Fig. 5  GDM analysis of spatial and environmental drivers of fungal community turnover across habitats. a) Fitted I-spline curves from GDMs illustrating 
the contribution of geographic distance on fungal dissimilarity across habitats. Shaded areas indicate standard deviation generated with 1,000 times per-
mutation. Only significant predictors are displayed here with non-significant predictors shown in Supplementary Fig. S10; b) Partitioning of explained de-
viance (%) by predictors including temperature, precipitation, spatial distance and their interactions, with varying contributions across different habitats

 

Fig. 4  Fungal community differences among habitats, seasons and monthly precipitation. The plots were calculated using the Bray-Curtis distance, ordi-
nated using Non-metric Multidimensional Scaling (NMDS) analysis. This analysis was performed at the genus level. (a) The shapes represent the habitat of 
the sample. The colors indicate the season of the samples; (b) The shapes represent the habitats and the colors represent the monthly precipitation (mm)
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separation compared to soil and litter, which displayed 
a flatter response curve, consistent with their weaker 
distance-decay relationship. However, when environ-
mental predictors such as temperature and precipita-
tion were included, spatial distance became confounded 
with precipitation, with their combined effect explain-
ing 38.0–55.8% of the variance in fungal dissimilar-
ity across habitats (Fig.  5b). Although temperature and 
precipitation contributed comparatively little as stand-
alone predictors (Supplementary Fig. S10), their influ-
ence was structured by site-specific factors, particularly 
in the phyllosphere, where fungal turnover exhibited 
greater sensitivity to environmental variation. Tempera-
ture alone explained a smaller proportion of the variance 
(1.1–3.1%).

Distribution, trophic modes, and predictors of ASVs across 
forest habitats
To characterise the distributions of ASVs, we designated 
their status as habitat-specific and ubiquitous based on 
their presence across different habitats (see Methods; 
Fig. 6a and Supplementary Fig. S11) and annotated their 
trophic modes against the FUNGuild database [43]. Soil 
harbored the highest number of habitat-specific ASVs, 
with the saprotroph-symbiotroph trophic mode being 
the most prevalent, showing an average relative abun-
dance of 3.4% across all soil samples (Fig. 6b). Although 
soil and litter are in close physical proximity, no ASVs 
were uniquely shared between these two habitats based 
on our filtering criteria. Only two ASVs-Cladosporium 
(ASV1) and Pyrenochaetopsis (ASV9)- were identified 
as ubiquitous across all habitats. In contrast, the above-
ground habitats, encompassing leaves, twigs, and litter, 
shared 12 ASVs, which collectively account for approxi-
mately 8.89% of the relative abundance in each sample 
(Fig. 6b; Supplementary Fig. S11). Pathogenic fungi were 
predominantly found in above-ground habitats, with 
leaves exhibiting the highest abundances.

We employed random forest analysis to classify 
habitats based on ASV abundances and to assess the 
importance of specific ASVs in distinguishing between 
habitats (Fig. 6c). The model demonstrated strong predic-
tive power, with an out-of-bag (OOB) error rate of 10.4% 
on training data and 10.3% on validation data (mean 
AUC = 0.98; Supplementary Fig. S12 and Supplementary 
Table S4a). Misclassification primarily occurred between 
leaves and twigs, with 30 out of 136 twigs misclassified as 
leaves (OOB error rate = 22.1%) and 15 out of 141 leaves 
misclassified as twigs (OOB error rate = 10.6%), consis-
tent with the general low BC values in samples between 
these two habitats. Merging leaf and twig into a single 
category reduced the OOB error rate to 7.4%, achieving 
100% classification accuracy for the combined category 
(leaf-twig) (Supplementary Table S4a). Interestingly, 

some litter and soil samples were misclassified as leaf or 
twig, but not vice versa. Specifically, 18 out of 142 litter 
samples were misclassified as leaf-twig, and 12 out of 126 
soil samples were misclassified into other three habitats 
(Supplementary Table S4b). This pattern suggests the 
potential vertical movement of fungal communities from 
canopy to ground through falling leaves and twigs.

Several ASVs emerged as strong predictors of specific 
habitats. For example, ASV36 (Salilomyza) and ASV6 
(assigned to the family Mortierellaceae) were key pre-
dictors for soil with relatively high relative abundances 
in soil samples (Fig.  6c), while ASVs such as ASV80 
(assigned to the family Branchybasidiaceae), ASV8 (Xyl-
ariaceae) and ASV51 (Chaetosphaeriaceae) were more 
abundant in leaf, twig and litter samples, respectively, 
highlighting their role in shaping the unique fungal com-
munities in the phyllosphere.

Complexity and connectivity of co-occurrence networks 
across habitats
The co-occurrence network was constructed from 
1,313,817 sequences representing 517 prevalent ASVs, 
revealing how different habitats and seasons influence 
fungal complexity and connectivity (Fig.  7; Supplemen-
tary Fig. S13). Significant variations in network size and 
complexity across different habitats and environmental 
conditions were observed. Soil networks were notably 
smaller and less complex than those of the other three 
habitats, with an average of 14 nodes (ASVs) compared 
to 39 in leaves, litters, and twigs. Seasonal comparisons 
revealed that network complexity decreased in winter 
compared to summer, with increases in the leaf of puli, 
twig of puli, litter, and soil, and decreases in the leaf and 
twig of Nantou from spring to fall (Supplementary Fig. 
S13), indicating that seasonal shifts, including changes 
in temperature and humidity, significantly impact fungal 
community co-occurrences. Modularity, reflecting how 
a network divides into distinct modules, varied signifi-
cantly across habitats and seasons (Fig. 7 and Supplemen-
tary Fig. S13). For instance, in Fushan, the modularity 
of leaf and litter networks increased from summer to 
winter (modularity of summer vs. winter: leaf = 0.59 vs. 
0.67, litter = 0.58 vs. 0.75), while twig and soil modularity 
decreased (modularity of summer vs. winter: twig = 0.70 
vs. 0.52, soil = 0.51 vs. 0.22). Generally, the modularity 
and network complexity increased from spring to fall in 
leaves but decreased in litter, with twig and soil networks 
remaining relatively stable.

We found significant negative correlations between 
NST and both node and edge numbers (Spearman’s ρ= 
-0.41, P < 0.05 for nodes; Spearman’s ρ= -0.45, P < 0.05 
for edges; Supplementary Fig. S14), indicating that as the 
number of nodes (ASVs) and edges (interactions) within 
a network increase, the influence of stochastic processes 
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Fig. 6  The endemicity of ASVs and their role in the random forest model. Number (a) and relative abundance (b) of habitat-specific and ubiquitous ASVs 
among habitats. Habitat combinations without sharing ASVs are not shown. (a) The bar color indicates the trophic mode of the ASVs; (b) Each boxplot 
represents the distribution of the total relative abundances of designated ASV across different habitats. For example, a data point in the soil category 
reflects the cumulative abundance of soil-specific ASVs within an individual soil sample. The box color represents the habitat. (c) Importance of ASVs in 
habitats classification and their relative abundance. The colors of boxes and dots represent its habitat.
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in community assembly decreases. Conversely, no sig-
nificant correlations were observed between NST and 
the number of modules or modularity. The proportion 
of trophic mode nodes also varied across seasons, with 
an increase in the proportion of saprotroph nodes in soil 
and saprotroph and pathotroph-saprotroph nodes in 

litter during the fall (Supplementary Fig. S15), highlight-
ing the role of environmental changes in shaping fungal 
community composition.

To assess the importance of individual nodes, we 
examined their connectivity within (modular hubs: 
Zi ≥ 2.5) and between (connectors: Pi ≥ 0.62) modules 

Fig. 7  Complexity and connectivity of co-occurrence networks across seasons and habitats demonstrated by node number, edge number, module 
number and modularity
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(see Methods; Supplementary Fig. S16), designating 
them as modular hubs or connectors based on crite-
ria set in [56]. No shared modular hubs or connectors 
were found between seasons, even within the same 
location, and none were identified in soil or during 
winter. In leaf networks, eight connectors were identi-
fied, including two pathotroph-saprotroph-symbio-
troph connectors (ASV9_Pyrenochaetopsis, Pi = 0.67, 
and ASV102_Cryptococcus, Pi = 0.65) and six uniden-
tified connectors (Supplementary Table S5). The twig 
network had two connectors, while the litter network 
exhibited nine connectors (Supplementary Table S5) 
and one modular hub (pathotroph ASV614_Dactylaria 
acacia, Zi = 2.57). Only one putative keystone species—
ASV1_Cladosporium (Pi = 0.66, Zi = 2.87)—was recog-
nized as a network hub in the leaf of Puli during spring. 
Connectors were more frequently identified in leaves, 
twigs, and litter in Puli across both spring and fall, 
while in Nantou and Fushan, connectors were primarily 
observed in leaves or litter.

Discussion
This study offers a detailed quantification of the spatio-
temporal heterogeneity in fungal community composi-
tion within various above-ground habitats in tropical 
Fagaceae forests. By examining fungal communities in 
leaves, twigs, litter, and soil, we provide comprehensive 
insights into how different habitats influence fungal 
diversity at a both small and broad spatial scale. High 
BC dissimilarity (median 0.65) was observed among 
fungal communities from the same habitat, even when 
samples were collected from the same tree, consistent 
with previous studies that reported highly dissimilar fun-
gal communities in litter fungi over short distances [20]. 
In addition, BC dissimilarity almost plateaued between 
fungal communities (median 0.94), suggesting a strong 
biogeography barrier resulting in disjunctive fungal 
communities. The GDM analyses further highlighted 
habitat-specific responses to environmental and spatial 
gradients, with leaf and twig community turnovers show-
ing stronger associations with spatial distance, reflect-
ing sensitivity to dispersal limitations, while litter and 
soil communities were less spatially constrained. Our 
analysis of the normalized stochasticity ratio (NST) fur-
ther supports these observations, with twigs, litter and 
leaves showing lower NST values, indicating a stronger 
influence of deterministic processes, while soil exhib-
ited higher NST values, reflecting greater stochasticity in 
these more dynamic habitats.

We uncovered distinct patterns in fungal community 
turnover across spatial scale and habitats. For example, 
in the Nantou region during spring, litter samples dis-
played a high correlation (Spearman’s ρ = 0.76), while 
no significant correlation was found in Puli during the 

same season. Soil fungal community turnover gener-
ally exhibited no or weak distance-decay relationships, 
which aligns with previous studies that found weaker dis-
tance decay in soil compared to other habitats [13, 57]. 
The exception observed in Fushan during summer may 
reflect site-specific factors driving community turnover 
at shorter distances. On a broader scale, environmental 
factors like precipitation exert a more significant role [11, 
34]. Integrating these observations, the GDM analyses 
indicated that while dispersal limitation was the domi-
nant factor influencing community turnover at small 
spatial scales, environmental filtering exerted a minor 
yet steady influence on fungal community assembly. The 
I-spline curves demonstrated a rapid plateau in turnover 
at small geographical distances (Fig.  5a), followed by a 
gradual rise attributed to abiotic factors along environ-
mental gradients (Supplementary Fig. S10). Given the 
limited climate gradient focusing on comparing samples 
collected at small spatial scale in this study, the relatively 
minor role of environmental filtering in shaping fungal 
communities may be unsurprising. Nevertheless, this 
reinforces well with studies encompassing wider climatic 
and elevational ranges to fully capture the influence of 
abiotic factors on fungal community assembly [12, 58, 
59]. In addition, the NST analysis further demonstrated 
that habitats with higher complexity and connectivity, 
such as leaf, litter and twig, were primarily influenced by 
deterministic processes, whereas more isolated or less 
complex habitats like soil were governed by stochastic-
ity. These findings underscore the role of habitat-spe-
cific factors in shaping fungal community dynamics and 
highlight the importance of accounting for these factors 
across spatial scales when studying fungal biogeography 
in forest ecosystems. Contrary to the previous studies 
[60–62], host identity did not have a discernible impact 
on either alpha diversity or fungal composition. This 
discrepancy may be specific to Fagaceae or due to the 
limited phylogenetic diversity of seven sampled species, 
warranting the need for broader taxonomic sampling to 
better assess host effects on fungal communities.

Documenting fungal communities across multiple 
habitats at small spatial scales allowed us to identify 
instances of overlap, with approximately 6% of samples 
from one habitat being more similar to samples from 
another habitat. This overlap suggests potential pathways 
for fungal movement or shared environmental conditions 
that facilitate community convergence and reinforce 
the importance of spatial orientation and environmen-
tal context in the dispersal and establishment of fungal 
communities. For example, certain litter samples showed 
similarities with soil communities, likely due to the phys-
ical proximity and interaction between these habitats 
[20]. This pattern emphasizes the importance of micro-
bial-mediated interfaces, such as the litter-soil interface, 
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in shaping community composition [6]. Moreover, the 
presence of similar communities across distinct habitats 
highlights the potential role of dispersal processes and 
environmental filtering in shaping fungal communities 
[11]. Interestingly, such interactions can lead to misclas-
sification of sample origin in the random forest analysis 
(error rate 10.4%), and we observed no misclassification 
in leaf and twig samples as litter or soil, possibly due to 
the reduced likelihood of upward transmission compared 
to horizontal movement across other habitats. In addi-
tion, the presence of airborne spores on surfaces may fur-
ther influence fungal dispersal patterns and classification 
accuracy.

An unidentified Cladosporium (ASV1) serves as the 
sole network hub in the co-occurrence network analysis 
and a key habitat predictor in the random forest model 
(mean decrease accuracy = 11.5). ASV1 also emerged as 
the most dominant species in the study, particularly in 
leaf and litter samples, as indicated by studies that have 
revealed Cladosporium cladosporioides as a common 
species in the phyllosphere and on fallen leaves [63]. A 
subsequent investigation of Cladosporium strains iso-
lated from lake environments further confirmed their 
ability to degrade various forms of humus, including 
laccase, lignin and triarylmethane [64]. The widespread 
presence of Cladosporium in these habitats highlights 
its potential role in leaf composition, nutrient cycling 
and organic matter decomposition, thereby emphasizing 
its ecological importance in phyllosphere fungal com-
munities. In addition, Saitozyma (ASV36) and Apiot-
richum (ASV81) were important predictors for habitat 
classification and were predominantly found in soil. This 
dominance is supported by prior findings from European 
Fagaceae forests [65], underscoring broader ecological 
importance beyond local habitats.

Conclusion
By examining spatiotemporal heterogeneity across coex-
isting habitats, we reveal contrasting processes driving 
fungal community assembly in tropical broadleaf for-
ests. Generalized Dissimilarity Modeling (GDM) under-
scored the predominant role of spatial distance, along 
with its interaction with environmental gradients—par-
ticularly precipitation—in shaping community turnover, 
with varying effects across habitats. Deterministic influ-
ences dominate in the interconnected leaf, twig and lit-
ter habitats, while stochasticity is more prominent in 
soil, highlighting the role of habitat features in shaping 
communities. The identification of Cladosporium sp. as a 
keystone species further highlights the ecological impor-
tance of certain taxa in maintaining network stability 
and community cohesion. Random forest analysis iden-
tified distinct fungal signatures, with misclassification 
linked to natural overlap between habitats. Our findings 

emphasize the importance of studying multiple habitats 
together for understanding fungal biogeography and 
underscore the need to explore habitat-specific drivers 
for ecosystem functioning and conservation in response 
to climate change.
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