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Abstract
Background Viruses that infect prokaryotes (phages) constitute the most abundant group of biological 
agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, 
microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of 
bacteriophage infection on host cell metabolism are extremely underexplored. Phages are classified as virulent or 
temperate based on their life cycles. Temperate phages adopt the lysogenic mode of infection, where the genome 
integrates into the host cell genome forming a prophage. Prophages enable viral genome replication without host 
cell lysis, and often contribute novel and beneficial traits to the host genome. Current phage research predominantly 
focuses on lytic phages, leaving a significant gap in knowledge regarding prophages, including their biology, diversity, 
and ecological roles.

Results Here we develop and describe Prophage-DB, a database of prophages, their proteins, and associated 
metadata that will serve as a resource for viral genomics and microbial ecology. To create the database, we identified 
and characterized prophages from genomes in three of the largest publicly available databases. We applied several 
state-of-the-art tools in our pipeline to annotate these viruses, cluster them, taxonomically classify them, and detect 
their respective auxiliary metabolic genes. In total, we identify and characterize over 350,000 prophages and 35,000 
auxiliary metabolic genes. Our prophage database is highly representative based on statistical results and contains 
prophages from a diverse set of archaeal and bacterial hosts which show a wide environmental distribution.

Conclusion Given that prophages are particularly overlooked and merit increased attention due to their vital 
implications for microbiomes and their hosts, we created Prophage-DB to advance our understanding of prophages 
in microbiomes through a comprehensive characterization of prophages in publicly available genomes. We propose 
that Prophage-DB will serve as a valuable resource for advancing phage research, offering insights into viral taxonomy, 
host relationships, auxiliary metabolic genes, and environmental distribution.
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Introduction
Phages constitute the most abundant group of biological 
agents on the planet, with conservative estimates sug-
gesting numbers of 1030 around the globe [1]. As conse-
quence of their sheer abundance, they have significant 
impacts across all microbial systems, hence they are of 
utmost importance in the study of the microbial world.

Phage impacts are dependent on the mode of bacterio-
phage infection which can be lytic, lysogenic, or chronic 
[2]. While lytic infection consists of viral particle produc-
tion and host lysis to release the viral particles, the lyso-
genic mode of infection, consists of phage integration 
into the host cell genome. This integration is known as 
a prophage and allows the bacteriophage genome to be 
replicated without causing the lysis of the host by repress-
ing lytic functions [2, 3]. Phages capable of lysogeny are 
known as temperate viruses and can switch between the 
lytic and lysogenic cycles. The switch in mode of infec-
tion from lysogeny to lytic is known as induction and can 
be caused by different external factors, these can include, 
antibiotics [4], UV rays [5], reactive oxygen species [6], 
changes in temperature [7], changes in pH [8], bacterial 
metabolites and products of host physiology [9], but can 
also occur spontaneously [10]. In addition, in polylysog-
eny, an event in which there are multiple prophages in a 
single host, prophages can encode noncanonical induc-
tion pathways to outcompete each other [11]. The switch 
between modes of infection leads to changes in microbial 
communities that extend beyond virus-host interactions 
and have broader implications. Prophages are commonly 
present within the genomes of bacteria and archaea, 
with some cases showing they can make up to 20% of the 
genome [12]. In addition, most bacteria, are polylysogens 
[11] and a well-studied case is the E. coli O157:H7 strain 
Sakai which has 18 prophages [13]. However, typically, a 
prophage genome represents only about 1% of the host’s 
genome [14]. Finally, in the chronic mode of infection, 
viral particles are continuously produced without lysis of 
the host [2].

Prophages can impact their respective microbial sys-
tems in different ways. They can manipulate the host’s 
gene expression and function, affecting the host’s cellu-
lar processes; they can also alter the host’s physiological 
functions or introduce new functions [2]. At a broader 
level, prophages impact the structure, function, ecology, 
and evolution of microbial systems [2, 10, 15–17]. Spe-
cifically, by lysing microbes in competition, prophages 
can prompt shifts in community dynamics [2]. In host-
associated systems, such as the human gut microbiome, 
they have the potential to impact the host’s physiology 
and health [10, 18]. For example, their bacterial hosts’ 
genomes and phenotypes can undergo changes which 
has the potential for the emergence of strains and diversi-
fication; this has implications in the hosts’ virulence and 

antibiotic resistance [19] which in turn could affect the 
overall health of hosts such as humans.

Phages can contain auxiliary metabolic genes (AMGs) 
which are involved in numerous metabolic processes and 
can alter host metabolism. AMGs are host-derived genes 
normally acquired by the phage through recombination 
and which can be expressed during infection by the phage 
to improve its fitness [20]. Their presence is of high rele-
vance given that these phage-encoded genes are involved 
in host metabolism and respond rapidly to environmen-
tal cues [21]. Additionally, through the incorporation of 
AMGs, prophages have the potential to influence ecosys-
tem biogeochemistry, thereby impacting global biochem-
ical processes. However, much remains to be unraveled 
to fully understand the extent of their impact [22]. Over-
all, our knowledge about prophages and their AMGs and 
the relationships between their hosts remains poor. Even 
though we know about certain relationships such as pro-
phages being more frequent in pathogenic and fast grow-
ing bacteria [23], or that viral lifestyle is a major driver of 
AMG composition [24], we still need to strive for a more 
universal understanding regarding such relationships.

Current limitations in prophage identification arise 
from the fact that viruses are polyphyletic, meaning they 
have multiple evolutionary ancestors. As a consequence, 
they do not display universal markers that ease their 
identification in datasets and hence, the use of databases 
only allows for the identification of a few. As a result, 
the ability to discover novel viruses remains restrained. 
Metagenomic studies have provided extensive insights 
into viruses, giving rise to the concept of ‘viral dark mat-
ter.’ This term refers to the unknown identities and func-
tions of viruses and their proteins, the majority of which 
have no known function [12, 25]. Chevallereau et al. 
defined the concept of ‘viral dark matter’ as viral species 
that have not been characterized but for which their exis-
tence has been revealed by metagenomic sequencing, or 
phage genes that have no assigned functions [3]. Surpris-
ingly, in certain datasets, ‘viral dark matter’ may consti-
tute up to 90% of sequences. Studies have identified three 
factors contributing to the existence of ‘viral dark matter’: 
the divergence and length of virus sequences, limitations 
in alignment-based classification, and the inadequate 
representation of viruses in reference databases [26]. As a 
result, a considerable number of viruses resist taxonomic 
classification or association with a bacterial or archaeal 
host which underscores the necessity to expand our 
knowledge to fully comprehend their potential effects on 
their respective microbial systems.

Several methods have been developed to circumvent 
the limitations of the exclusive use of viral hallmark genes 
and homology-based methods, and many integrate a 
combined approach to complement sequence similar-
ity comparisons. Notable examples include the use of 
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machine learning or the search for composition patterns 
such as k-mer frequency among others. Examples of 
tools that use a combined approach include DEPhT [14], 
geNomad [27], PHASTEST [28], PhiSpy [19], VIBRANT 
[20], VirSorter2 [29], and VirFinder [30]. Although the 
methods used by these tools have been effective in iden-
tifying phages, much remains undiscovered. This can be 
facilitated by the creation of standardized databases that 
can drive the discovery of novel phage signatures.

Despite the numerous methods/tools that have been 
developed for the study of phages, the number of data-
bases lags behind. For the most part, current databases 
are associated with software and their purpose is to be 
used as a reference for homology-based comparisons. 
Only a small subset of databases exist as catalogues that 
can be used to explore the phages contained within. 
Some resources, like proMGE [31], offer extensive data 
on mobile genetic elements, including phages, but are not 
focused specifically on prophages. And from this subset, 
only a few are comprehensive as several databases focus 
on a single microbial system, such as the gut microbiome 
or marine environments. Examples of comprehensive 
prophage studies/datasets focused on specific microbial 
systems include Marine Temperate Viral Genome Data-
set (MTVGD) [32], and Human Gut-derived Bacterial 
Prophages [33]. Examples of comprehensive databases 
that contain prophage sequences are Microbe Versus 
Phage database [34] intended for exploring the relation-
ships between phages and their hosts; IMG/VR v4 [35], 
which contains a significant number of prophages and 
metadata such as environments; and PhageScope [36], 
a bacteriophage database encompassing temperate and 
lytic viruses.

Here, we present Prophage-DB   (   h t  t p s  : / / g  i t  h u b . c o m 
/ A n a n t h a r a m a n L a b / P r o p h a g e - D B     ) , a comprehensive 
database of prophages that will serve as a standardized 
resource to facilitate viral diversity and ecology studies.

Methods
Data collection
To create Prophage-DB, we identified prophages from 
publicly available prokaryotic genomes from three 
databases: Genome Taxonomy Database (GTDB) [37] 
(release 207)(65,703 genomes), National Center for Bio-
technology Information (NCBI) Reference Sequence 
(RefSeq) database [38] (17,115 genomes) (accessed 
March 2023), and Searchable Planetary-scale mIcro-
biome REsource (SPIRE) [39] (107,008 genomes). The 
prokaryotic genomes contained both archaeal and bacte-
rial representative genomes and were used as the initial 
input. To generate the dataset, we applied several tools to 
identify and annotate viruses, cluster them, assign taxon-
omy and measure their quality (Fig. 1). The SPIRE data-
base also included a portion of genomes with no domain 

classification labeled as unknown (these are referred to as 
unclassified).

Prophage identification
Prophage identification was carried out using VIBRANT 
(v1.2.1) which identifies and annotates viruses from 
nucleotide scaffolds. VIBRANT is able to detect both 
lytic and lysogenic viruses, however, given that all 
viruses were identified from prokaryotic genomes, they 
were deemed as prophages. We used the default argu-
ments when using VIBRANT (minimum scaffold length 
requirement = 1,000 base pairs, minimum number of 
open readings frames (ORFs, or proteins) per scaffold 
requirement = 4).

Virus clustering
Due to redundancy among the genomes in the three 
databases our next step was to cluster the identified 
viruses (VIBRANT output nucleotide files for phages). 
For this we used the algorithm and software, skani 
(v0.2.1) [40], which performs average nucleotide identity 
(ANI) calculation using a k-mer scheme. We performed 
all-to-all comparisons using the skani default arguments, 
with exception to the alignment fraction argument which 
was set to 85 (--min-af 85). After obtaining ANI and 
alignment fraction, we removed a total of 44,487 viral 
sequences for which ANI was 100% and both the query 
and subject had at least 85% alignment fraction. In the 
removal of identical sequences, we prioritized SPIRE 
sequences over GTDB and NCBI sequences given that 
the bulk of the data originated from SPIRE.

Viral taxonomy and metadata
After performing clustering to remove highly similar 
sequences, we utilized geNomad (v1.7.0) [27] to perform 
taxonomic assignment of the viral genomes (specifically, 
we used the annotate module). In addition, we performed 
virus quality characterization using CheckV (v1.0.1) [41] 
obtaining viral quality, completeness, and contamination. 
The workflow culminated with collecting metadata from 
GTDB and SPIRE which provided important informa-
tion such as host taxonomy, host isolation source, and 
geographical coordinates. Additional metadata includes 
AMGs highlighted by VIBRANT, and metrics provided 
by CheckV (Table S1, S2).

Representation analysis
We utilized the taxonomic assignment counts of the pro-
virus subset of IMG/VR v4 (all sequences) and prophages 
in Prophage-DB. Given that IMG/VR is a flagship data-
base in viral ecology and contains the largest unculti-
vated virus genomes (UViGs) collection [35], we assume 
that it should be the closest database to being representa-
tive of real phage diversity. To determine representation, 

https://github.com/AnantharamanLab/Prophage-DB
https://github.com/AnantharamanLab/Prophage-DB
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we followed the approach carried out by Titley et al. [42] 
in which groups above the 1:1 line were classified as over-
represented and those below as under-represented. We 
compared the logarithmic proportions of the prophages 
in our database to those in IMG/VR v4 across various 
viral taxonomic ranks. By comparing it to our observed 
counts, it allowed us to determine which groups were 
over and under-represented.

Statistical analysis
We employed random sampling with replacement (boot-
strap value of 10,000) on the taxonomic assignments of 
the provirus subset from IMG/VR v4 and prophages in 
Prophage-DB. This step was executed using a custom 

Python script, where the sampling was performed utiliz-
ing the .sample() method from the Pandas library based 
on the taxonomic counts for each taxonomic rank. Con-
sidering the comprehensiveness of IMG/VR v4, we com-
pared its results with those from our database to validate 
our observations.

AMG filtering
AMGs were identified with VIBRANT. For filtering 
AMGs, we followed the steps outlined in Zhou et al. [43]: 
1) AMGs at either end of the scaffold were filtered out; 2) 
AMGs with VIBRANT KEGG [44] or Pfam [45] v-scores 
equal or greater than 1 were filtered out; 3) AMGs that 

Fig. 1 Visual representation of steps and software utilized to create Prophage-DB
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had four genes (upstream or downstream) with KEGG 
v-score smaller than 0.25 were filtered out.

Results
Prophage identification
After viral identification and clustering, we obtained 
356,776 prophage sequences, most of which originated 
from bacterial hosts (323,608 prophages from bacterial 
hosts). The second largest group consisted of prophages 
from unclassified hosts (21,226 prophages), while pro-
phages in archaeal hosts (11,942) comprised a smaller 
subset (Fig.  2A) (Table S1). Across all taxonomic ranks, 
except species, the majority of prophages in our data-
base were associated with a host with known taxonomy 
(Fig. 2B). In comparison to the reported taxonomic ranks 
in GTDB, we found that at least 50% of them contained 
prophages to the family level for both archaea and bacte-
ria (Table S3). Phage taxonomy was assigned most down 
to the class level, while at the order and family level, 
only a small subset of phages had unassigned taxonomy 
(Fig. 2C-E). Next, we used CheckV to assess the quality 
of our prophage genomes. Most genomes were labeled as 
low quality, and with a low completeness even while they 
were detected in complete prokaryotic genomes (Table 
S4). These results serve as evidence of our poor knowl-
edge of prophages and viral dark matter and highlight the 
need for more in-depth studies that search for novel sig-
natures associated with prophages.

Prophage taxonomy in Prophage-DB
A significant proportion of the prophage sequences 
(84%) in our database were assigned to a taxonomic 
rank. At higher taxonomic ranks, phage taxonomy fol-
lowed a similar distribution across archaeal and bacterial 
groups (Figure S1). In archaeal hosts, the Duplodnaviria 
(realm), Heunggongvirae (kingdom), Uroviricota (phy-
lum), and Caudoviricetes (class) constitute around 92% 
of the observations. Similarly, in bacterial hosts, the same 
phage groups constitute around 98% of the observations. 
The same pattern is also observed in prophages found 
in unclassified hosts. This imbalance is evidence of the 
bias towards studying certain viral groups and reveals 
groups of interest that show promise in the discovery 
of novel prophage signatures. In contrast, at the order 
and family level, the taxonomic ranks show a more bal-
anced distribution, i.e., phages in a given order or fam-
ily were distributed across a broad range of families or 
sub-families, respectively, instead of being confined to 
a few. This was observed for prophages in archaea, bac-
teria, and unclassified hosts (Fig.  3). At the order level, 
most prophages in bacteria and unclassified hosts belong 
to Crassvirales. In contrast in archaeal phages, the group 
Haloruvirales were the most abundant (Fig. 3). Interest-
ingly, the group Haloruvirales has little representation in 
bacteria. Similarly, the order Tubulavirales was frequent 
in bacteria but had low frequency in archaea. When com-
pared to archaeal phages, prophages in bacteria showed 

Fig. 2 Prophage-DB general metrics (A) Percentages of the three host groups in the database (archaea, bacteria, and unclassified hosts). (B) Total count 
of prophage hosts with available metadata regarding a specific host taxonomic rank. (C) Counts of taxonomic ranks for which prophages have been as-
signed to in the bacterial host group. (D) Counts of taxonomic ranks for which prophages have been assigned to in the archaeal host group. (E) Counts 
of taxonomic ranks for which prophages have been assigned to in the unclassified host group
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Fig. 3 Prophage order and family counts. Words in color represent orders found only in one host group (archaea, bacteria or unclassified host). Y-axis 
represents the counts of each phage taxonomic group; x-axis contains the names of phage taxa. Green, pink, and blue colors correspond to bacterial, 
archaeal, and phages from unclassified hosts, respectively

 



Page 7 of 14Dieppa-Colón et al. Environmental Microbiome            (2025) 20:5 

more diversity (there were 7 phage groups found only in 
bacteria, highlighted with color). At the family level, we 
observed more differences across the three host groups 
(Fig.  3). 17 phage groups were found only in bacterial 
phages, 2 (Globuloviridae and Malacoherpesviridae) only 
in archaeal phages, and one (Retroviridae) only in phages 
from unclassified hosts. Inoviridae, Pleolipoviridae, and 
Kyanoviridae were the families with most counts for 
bacteria, archaea, and phages from unclassified hosts, 
respectively. Just as we observed at the order level, some 
groups predominant in bacteria have low frequencies in 
archaea and vice versa. This was the case for Pleolipo-
viridae which is predominant in archaeal hosts but not 
in bacteria. On the other hand, Inoviridae was the group 
with most counts in bacterial hosts but had very low fre-
quency in archaeal hosts.

Environmental distribution of prophages in Prophage-DB
Next, we analyzed the prophage host distribution. Our 
database contained 149,796 hosts which were widely 
distributed throughout the world (Fig.  4A) (Table S1). 
However, it was noticeable that developed countries con-
tained more samples. To be more specific we separated 
our data by environment or isolation source (Fig. 4B). We 
focused on 5 main environments of interest: host-asso-
ciated, marine, freshwater, terrestrial, and anthropogenic 
(Fig. 4C). As expected, prophages of bacteria were mostly 
related to host-associated bacteria (40%). Meanwhile, in 
archaeal hosts, more than half of the prophages (57%) 
were associated with aquatic environments. Similarly, 
in unclassified hosts, most prophages were associated 
with aquatic environments, and specifically, 75% came 
from marine environments. The anthropogenic isola-
tion source was one of the smallest groups for all three 
groups.

Fig. 4 Phage-host distribution and isolation source (A) Locations of bacterial hosts’ isolation sources (left panel). Percentages of selected environments 
for bacterial hosts (right panel). (B) Locations of archaeal hosts’ isolation sources (left panel). Percentages of selected environments for archaeal hosts’ 
(right panel). (C) Locations of unclassified hosts’ isolation sources (left panel). Percentages of selected environments for unclassified hosts (right panel)
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Prophage count analysis in Prophage-DB
Next, we evaluated prophage distribution across host tax-
onomic ranks, i.e. the number of prophages per host. In 
these analyses, we utilized a non-dereplicated dataset, as 
using the prophages directly from our database would not 
accurately reflect prophage distribution. Specifically, we 
looked at archaeal and bacterial phyla and accompanied 
this data with the count of the hosts (Fig. 5A)). In addi-
tion, we extended this analysis to other host taxonomic 
ranks (Table S5, Table S6, Figure S2-S4). In archaea, the 
most common host phylum, Thermoproteota, had the 
largest prophage count. This was also observed for Pseu-
domonadota, the most common phylum in bacteria in 
our database. For the most part, all other phyla followed 
this pattern, more hosts meant a greater number of pro-
phages (Fig.  5B). However, some phyla showed higher 
ratios by having a high number of prophages. Numerous 
phyla had low prophage counts in bacteria.

Representation analyses of genomes in Prophage-DB
Next, we analyzed the representation status of viral 
groups. To determine representation, the baseline was 
that groups above the 1:1 line were classified as over-
represented and those below as under-represented. We 
compared the logarithmic proportions of the prophages 
in our database to the provirus subset in the Integrated 
Microbial Genomes Viral Resources v4 (IMG/VR) across 
various viral taxonomic ranks (Fig. 6). At the class, order, 
and family levels, bacterial phages tended to be over-
represented, on the other hand, at these levels, archaeal 
phages tended to be under-represented. This analysis was 
also carried out by separating the viral taxonomic ranks 
by environment (Table S7-S12, Figure S5-S14).

Auxiliary metabolic genes
We identified a total of 35,990 AMGs. 33,617 were found 
in bacterial phages, 1,327 in archaeal phages and 1,045 in 
phages of unclassified hosts (Table S2). We analyzed how 
AMGs were distributed through five selected environ-
ments (host-associated, marine, fresh-water, terrestrial, 
and anthropogenic) (Fig.  7A). Additionally, we analyzed 
AMG groups and their distribution across archaeal and 
bacterial hosts (Fig.  7B). AMG distribution was mostly 
similar across all environments. In addition, AMG distri-
bution by host was mostly similar across phyla.

Statistical analysis of observed virus counts in 
Prophage-DB
We utilized random sampling with replacement (boot-
strapping value of 10,000) on taxonomic counts belong-
ing to our database and IMG/VR.  Given that IMG/VR 
is a robust dataset, it served as a baseline to identify 
expected counts in our database. In other words, we 
expected to observe similar counts between IMG/VR and 

our database (Fig. 8). At the family level, both expected 
and observed counts were similar and the majority 
fell into the same group (in this casemost phages were 
unclassified). This trend was observed at the rest of the 
taxonomic levels (Tables S13-S24, Figures S15-S24). We 
carried out this same analysis but separated the data into 
the 5 previously shown environments. We observed the 
same trend for the majority but expected and observed 
counts tended to deviate more than when analyzing all 
counts.

Discussion
As expected, a great portion of prophages originated 
from bacterial hosts while only a small percentage origi-
nated from archaeal hosts as the databases used in this 
study mainly contained bacterial genomes (Table S1). 
The small number of archaeal prophages in our database 
could stem from the historical focus on bacteria. Given 
that archaeal viruses are estimated to be as abundant 
as their bacterial counterparts [46] we should expect to 
observe a similar amount unless they are inherently less 
diverse. The focus on bacteria has resulted in a gap in 
our knowledge of classification systems for prophages in 
the archaeal domain. A likely contributing factor are that 
techniques used to study phage in experimental settings 
are biased towards bacteria-infecting phages [25]. The 
small percentage of archaea in our database highlights 
the importance of further research in order to character-
ize more archaea and detect more archaeal prophages.

Regarding virus taxonomy, we observed a bias towards 
double-stranded viruses, resulting in most viruses being 
classified into a single realm: Duplodnaviria (all double-
stranded DNA viruses). This result was not surprising as 
tailed phages with double-stranded DNA genomes are 
the most prevalent group of phages in public databases 
[1]. A likely factor contributing to the high prevalence of 
tailed phages with double-stranded DNA genomes could 
be a result of biased virology techniques and approaches. 
For example, in soil environments there is a bias towards 
this group as microscopic counting methods primarily 
detect tailed and encapsulated phages [25]. Ultimately, 
the majority of viral signatures used in viral identifica-
tion also belong to this group. As expected, most of the 
identified prophages are in the Heunggongvirae kingdom 
(viruses containing the HK97 fold major capsid protein) 
given that it’s the only kingdom in the Duplodnaviria 
realm.

Despite these limitations, throughout our analysis 
we have identified patterns and groups that are of par-
ticular interest for bacterial and archaeal phages. Even 
though only a small subset of phages was classified at the 
order and family level, we observed interesting trends 
that are worth exploring. At the order level, the orders 
Vinavirales, Kalamavirales, Durnavirales, Asfuvirales, 
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Fig. 5 Prophage distribution across host taxa (A) Host and prophage count in bacteria and archaea. Only phyla with the greatest number of prophages 
are shown. (B) Log-transformed counts displaying relationship between host and provirus counts by phyla (p-value of the regression line: 4.38e-22)
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Fig. 6 Representation analysis comparing proportion of taxonomic groups in our database to the proportions in IMG/VR database. Axes contain log 
transformed values of the counts. Values above the 1:1 line are considered over-represented, those below, are under-represented. Panel A shows results 
for bacterial phages; panel B shows results for archaeal phages. Margin colors represent taxonomic levels
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Patatavirales, Zurhausenvirales and Ortervirales were 
only found in bacterial phages. In the same fashion, the 
familes Corticoviridae, Peduoviridae, Casjensviridae, 
Tectiviridae, Roundtreeviridae, Duneviridae, Partitiviri-
dae, Zierdtviridae, Chaseviridae, Hytrosaviridae, Guel-
inviridae, Asfarviridae, Steigviridae, Salasmaviridae, 
Papilloviridae, Potyviridae and Caullimoviridae were 
only found in bacterial phages. However, we observed 
some unexpected families: Lipothrixviridae and Rudiviri-
dae in bacteria; these families have only been reported in 
archaeal hosts [47].

At the family level, archaeal phages also demonstrated 
exclusivity as Globuloviridae and Malacoherpesviridae 
were only found in the archaea group. The presence of 

Globuloviridae is expected, given that only archaeal 
hosts have been reported [48]. Conversely, the detection 
of Malacoherpesviridae is unexpected, as it is known to 
infect bivalves [49]. Interestingly, the family Retroviridae, 
which is found in vertebrate hosts [50], was found infect-
ing unclassified hosts. These identified phages that are 
exclusive to particular groups could have unique signa-
tures that might shed some light in differences between 
archaeal and bacterial phages. However, it is possible that 
these phages simply haven’t been discovered across these 
groups yet but could be found with more sampling.

Additional findings of interest include the environ-
mental distribution of the prophage hosts. It is note-
worthy that the marine source was the most prevalent in 

Fig. 7 AMG distribution across environments and host taxa. (A) AMG distribution across different environments. The group Other represents data that did 
not fall into any of the shown categories. The Unknown category represents data for which environment is labeled as unknown. (B) AMGs distribution by 
host phyla (data shown is only for phyla with 250 or more counts). Nucleotide metabolism AMGs were not considered in this analysis
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Fig. 8 Comparison between IMG/VR counts (expected) and Prophage-DB counts (observed). X-axis represents the percentage. Random sampling with 
replacement was used (Bootstrap value of 10,000). Error bars represent the standard error. Y-axis colors represent taxonomic rank (shown in legend)

 



Page 13 of 14Dieppa-Colón et al. Environmental Microbiome            (2025) 20:5 

archaeal and unclassified samples, while it was the least 
prevalent in bacterial samples. This might suggest that 
human-related environments are not major reservoirs 
for prophages, or it could simply indicate a sampling bias 
which is the most likely. For example, in activated sludge, 
phages are highly abundant and diverse and more viral 
DNA has been found in this environment in comparison 
with soil and plant-associated environments, and other 
engineered systems [51].

Ultimately, these results emphasize the need for sam-
pling in new environments and regions, which could lead 
to the discovery of novel microbial species and their pro-
phages. Additionally, there is a need to improve metadata 
collection practices, as our database lacks environmental 
information for some entries. Prophage-DB can enable 
finer analyses of prophage distributions since it has been 
demonstrated that some phages are globally distributed 
while others are endemic [52]. Therefore, it would be 
worth investigating if there are genetic underpinnings for 
what makes a phage endemic or not.

In our prophage count analysis of Prophage-DB, we 
identified host groups of interest which contained high 
numbers of prophages. At the phylum level, in bacteria, 
Pseudomonadota was the predominant group in both 
prophage and host counts and has been reported in other 
studies [53]. Other groups with high prophage densi-
ties include Firmicutes and Actinobacteria, likely from a 
high degree of sampling due to their relevance in medical 
research [54].

For each taxonomic rank, we identified over and under-
represented groups. Generally, our database had more 
phage diversity compared to IMG/VR v4, and thus sev-
eral groups were not included in this analysis as they were 
not found in IMG/VR v4 (Table S7-S12). The unclassi-
fied category tended to be over-represented across all 
ranks suggesting a higher portion of novel phages in our 
database in comparison to those reported in IMG/VR 
v4 (this was observed across anthropogenic, freshwater, 
host-associated, marine, and terrestrial environments). 
In bacterial hosts, phage taxonomic groups for the most 
part were over-represented or were not over or under-
represented. In contrast, archaeal phages tended to be 
underrepresented across all taxonomic ranks. Studying 
these viruses is essential for enhancing viral sequence 
databases, as this research will likely contribute to the 
discovery of additional viruses and the refinement of 
alignment-independent methods.

In our analysis of AMGs, we examined how they were 
distributed across several environments and hosts. It has 
been hypothesized that AMG compositions may reflect 
the adaptation of their hosts to their environments [24], 
that AMGs show a niche-dependent distribution pat-
tern [32], and that some environments show a higher 
AMG diversity [55]. Our comparison of AMGs across the 

selected environments did not reveal any noticeable dif-
ferences which presents a contrast to previous reports. 
Regarding AMG distribution across hosts, we looked into 
the top 20 most abundant phyla and did not observe any 
stark contrast across them. Similar to AMG environmen-
tal distribution, host distribution was mostly uniform but 
there were certain phyla with specific groups of AMGs 
being more abundant. This suggests that AMG composi-
tion differences might be more influenced by the host.

Conclusion
Prophage-DB is an extensive database encompassing over 
350,000 prophage sequences from archaeal and bacterial 
hosts. Prophage-DB provides a multifaceted exploration 
of prophage genomics, diversity, ecology, and evolution 
by examining their relationships with their hosts, their 
environmental distribution, their auxiliary metabolic 
genes (AMGs), and their taxonomy. We anticipate that 
Prophage-DB will serve as a valuable resource for future 
studies, offering insights into prophages and their roles in 
microbiomes and ecosystems.
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