
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Peral-Aranega et al. Environmental Microbiome           (2023) 18:53 
https://doi.org/10.1186/s40793-023-00510-z

Environmental Microbiome

*Correspondence:
Ezequiel Peral-Aranega
epa@usal.es

Full list of author information is available at the end of the article

Abstract
Background  Ips typographus (European spruce bark beetle) is the most destructive pest of spruce forests in Europe. 
As for other animals, it has been proposed that the microbiome plays important roles in the biology of bark beetles. 
About the bacteriome, there still are many uncertainties regarding the taxonomical composition, insect-bacteriome 
interactions, and their potential roles in the beetle ecology. Here, we aim to deep into the ecological functions and 
taxonomical composition of I. typographus associated bacteria.

Results  We assessed the metabolic potential of a collection of isolates obtained from different life stages of I. 
typographus beetles. All strains showed the capacity to hydrolyse one or more complex polysaccharides into simpler 
molecules, which may provide an additional carbon source to its host. Also, 83.9% of the strains isolated showed 
antagonistic effect against one or more entomopathogenic fungi, which could assist the beetle in its fight against this 
pathogenic threat. Using culture-dependent and -independent techniques, we present a taxonomical analysis of the 
bacteriome associated with the I. typographus beetle during its different life stages. We have observed an evolution 
of its bacteriome, which is diverse at the larval phase, substantially diminished in pupae, greater in the teneral 
adult phase, and similar to that of the larval stage in mature adults. Our results suggest that taxa belonging to the 
Erwiniaceae family, and the Pseudoxanthomonas and Pseudomonas genera, as well as an undescribed genus within the 
Enterobactereaceae family, are part of the core microbiome and may perform vital roles in maintaining beetle fitness.

Conclusion  Our results indicate that isolates within the bacteriome of I. typographus beetle have the metabolic 
potential to increase beetle fitness by proving additional and assimilable carbon sources for the beetle, and by 
antagonizing fungi entomopathogens. Furthermore, we observed that isolates from adult beetles are more likely 
to have these capacities but those obtained from larvae showed strongest antifungal activity. Our taxonomical 
analysis showed that Erwinia typographi, Pseudomonas bohemica, and Pseudomonas typographi species along with 
Pseudoxanthomonas genus, and putative new taxa belonging to the Erwiniaceae and Enterobacterales group are 
repeatedly present within the bacteriome of I. typographus beetles, indicating that these species might be part of 
the core microbiome. In addition to Pseudomonas and Erwinia group, Staphylococcus, Acinetobacter, Curtobacterium, 
Streptomyces, and Bacillus genera seem to also have interesting metabolic capacities but are present in a lower 
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Background
The European bark beetle Ips typographus is consid-
ered a secondary pest as it mainly attacks weakened or 
dying spruce conifers (Picea abies), thus, playing a role 
in the forest recycling process [1]. Nowadays, drought is 
severely affecting Norway spruce woodlands, one of the 
most important in the European forest economy, not only 
by directly increasing mortality rates but also weaken-
ing them, making these trees more susceptible to beetle 
attacks [2, 3]. Climate change also increases temperatures 
which in turn heighten the frequency of I. typographus 
outbreaks, leading to pheromone-mediated mass attacks, 
even on healthy trees. Consequently, this situation is 
causing the devastation of these environments [4].

Most of the I. typographus lifespan occurs inside the 
inner bark of its host, where the insect undergoes differ-
ent life stages: egg, larvae, pupae, teneral adult, and adult. 
Log trees present a competitive environment, in which 
essential nutrients such as phosphorus, nitrogen, and 
other biomolecules (e.g. vitamin B) are scarce [5–7]. Fur-
thermore, other beetles (Cleridae), parasite wasps, nema-
todes, and entomopathogenic fungi, amongst others, are 
natural enemies of I. typographus beetles [8–10].

Alternatively, it has been reported that some micro-
organisms are beneficial, or have the potential to be 
beneficial, to the beetles’ fitness by alleviating possible 
threats [1, 11–14] Although, fungal biodiversity and roles 
of fungi in beetle ecology have already been extensively 
described [13, 15, 16], there are still many uncertainties 
regarding its bacteriome, such as taxonomical composi-
tion, insect-bacteriome interactions, and their potential 
roles in beetle ecology [1].

Some studies have provided insights in the I. typogra-
phus bacteriome using massive amplicon sequenc-
ing [17–19]. They found that the main phylum 
present was Proteobacteria. Concretely, Erwinia, Pseudo-
xanthomonas, Pseudomonas, Acinetobacter, and Serratia 
were amongst the most abundant genera in these studies. 
Strains isolated from I. typographus beetles have already 
been published, although these studies covered one to 
three isolates [20–22].

Additionally, it has been reported that the beetle bac-
teriome may have the metabolic capacity to alleviate 
nutritional needs by the hydrolyzation of complex sugar 
polymers that are non-digestible to the beetle into sim-
pler, more assimilable sugars [1]. Similarly, bark beetle-
associated bacteria may have a protective role against 
pathogens through the synthesis of metabolites such as 
antibiotics, siderophores, and chitinases amongst others 

[23–25]. Hydrolyzation of complex sugars and antago-
nism to other microbes have been previously supported 
by the results of in silico and in vitro assays analysing spe-
cific strains originating from the inner part of Ips beetles 
[20, 21, 26, 27]. Also, an in silico approach predicted the 
genomic potential of different Ips bacteriomes [17]. All 
these findings support the hypothesis that the bacteri-
ome is important for beetle fitness. Although, an exten-
sive collection of isolates, obtained from different life 
stages and using different culture approaches, might pro-
vide a better understanding of the cultivable bacteriome 
and their metabolic potential.

In this study, we aimed to unveil potential ecological 
roles of I. typographus associated bacteria and to identify 
key taxa. To do that, we evaluated the capacity of these 
bacterial isolates to hydrolyse complex polysaccharides 
into simpler molecules, which may provide an additional 
carbon source to the I. typographus beetle. Our experi-
ments also evaluated the isolates for their ability to antag-
onize fungi entomopathogens, which could potentially 
aid in protecting the beetle. Additionally, through cul-
ture-dependent and -independent techniques, we present 
a taxonomical analysis of the bacteriome associated with 
the I. typographus beetle during its different life stages. 
Taken together, our results suggest that some taxa within 
this bacteriome may have vital roles in maintaining beetle 
fitness and are ubiquitously present in their ecology.

Materials and methods
Sampling
We collected spruce tree logs infected with I. typographus 
in Nižbor forest (Czechia, 49°59’09.9"N 13°56’47.5"E, 
390  m.a.s.l.) at two different times: January and June 
2019. The sampling site is situated in a continuously 
forested area belonging to Protected Landscape Area 
Křivoklátsko. The average annual temperature is 9ºC 
and the average annual precipitation is 494.9 mm (Lány 
observatory, Czech Hydrometeorological Institute). Both 
times the infested logs were transported to the Institute 
of Microbiology of the CAS (Prague) and incubated there 
in the exterior in a shaded place simulating the original 
forest site and successively sampled for various bark bee-
tle life stages regardless of the gender.

Bacterial isolation
For bacterial isolation, we collected and pooled 10 I. 
typographus individuals of each developmental stage 
separately: adults, teneral adults, pupae, and larvae, 
which were then surface sterilized for 1 min with HgCl2 

frequency. Future studies involving bacterial-insect interactions or analysing other potential roles would provide more 
insights into the bacteriome capacity to be beneficial to the beetle.
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(2%) and rinsed with distilled water in aseptic conditions. 
Afterward, the insects were crushed, and serial dilutions 
were made. Finally, solutions at different concentrations 
(10− 3 to 10− 6) were spread onto different culture medi-
ums: tryptic soy agar (TSA; Sigma-Aldrich, Darmstadt, 
Germany); M9 minimal medium (M9; K2HPO4 0.3%, 
KH2PO4 0.3%, MgSO4 + 7H2O 0.15%, CaCl2 + 2H2O 
0.05%, NaCl 0.1%, NH4NO3 0.1%, Mannitol 10% and 2% 
agar); nutrient agar (NA; Sigma-Aldrich, Darmstadt, 
Germany); and on Mitsuhashi and Maramorosch Insect 
modified medium (MMI; CaCl2·2H2O0.19  g/L, MgCl2 
46,9 mg/L, KCl 0.2 g/L, NaCl 7 g/L, NaH2PO4 0.1739 g/L, 
D(+) Glucose 4  g/L, lactalbumin hydrolysate 6.5  g/L, 
yeast extract 5 g/L, NaHCO3 0.12 g/L, pH was adjusted 
to 6.3–6.9 and 50 mL/L of 10% horse red blood cells 
(after autoclave)). The plates containing the latter cul-
ture medium were incubated at 26.5 °C with 5% O2 until 
colonies were observed. Also, AN and M9 mediums were 
adjusted to a final pH of 5 or 7 and cultured them at 15ºC 
or 26.5 ºC. Those isolates obtained in February 2019 from 
adult beetles were called CA, from teneral adults CYA, 
from Pupae CP, and larvae C1L, C2L, and C3L. Mean-
while, those adults obtained from samples of June 2019 
were called AC, but if from larvae: MMI and LC when 
from larvae. Pure cultures were stored in 20% glycerol at 
− 80 °C for long-term storage.

DNA extraction and bacterial strains identification
For bacterial strain identification, the REDExtract-N-
Amp™ Tissue PCR Kit Protocol (Sigma-Aldrich, Darm-
stadt, Germany) was used to extract DNA as indicated 
by the manufacturer. The 16 S rRNA gene was amplified 
as described in Rivas et al., 2007 [28]. The PCR prod-
ucts were visualized on a 1% agarose gel after electro-
phoresis (60 V for 120 min), purified using the GeneJET 
Gel Extraction and a DNA Cleanup Micro Kit (Thermo 
Scientific™, Göteborg, Sweden), and sequenced by Sanger 
at Macrogen Ltd. (Madrid, Spain). The sequence frag-
ments obtained were aligned using BioEdit [29] and the 
resulting sequences were compared against type strains 
available at the EzTaxon 16  S rRNA database using the 
EzBioCloud platform [30].

Amplicon sequencing
We sampled and pooled 15 individuals of each develop-
mental stage: adults, larvae, pupae and teneral adults, 
from trunks collected in June. These pooled samples 
were surface sterilized by subsequent washing with 70% 
ethanol, 2% Tween 80 (Avantor, USA) and sterile dis-
tilled water before DNA extraction. We adopted the 
phenol-chloroform protocol [31] for DNA extraction. 
Briefly, the total DNA was extracted using the phenol-
chloroform–isoamyl alcohol (25:24:1) premixed solution 
(Sigma-Aldrich, St. Louis, Missouri, USA). The initial 

homogenization was done on FastPrep-24™ 5G Instru-
ment (Irvine, California, USA) using wolf-ram beads in 
combination with glass beads (BioSpec Products, Inc., 
Bartlesville USA). DNA yield was quantified on Qubit 2.0 
Fluorometer (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA) using Qubit dsDNA BR Assay Kit and 
DNA quality was checked on Nanodrop (NanoDrop™ 
2000c, Thermo Fisher scientific).

PCR amplification was done by kit KAPA HiFi HotStart 
ReadyMix (Roche, Basel, Switzerland) using an input 
DNA concentration of 50 ng/µl. We used labelled pairs 
of primer 799F 5’-AACMGGATTAGATACCCKG-3’ 
[32] and 1115R 5′-AGGGTTGCGCTCGTTRC-3′ [33] 
for 16  S marker V5-V6 region for the bacterial identifi-
cation. This region was selected as these primers do not 
match beetle 18  S and mitochondrial 16  S rRNA gene 
sequences [34]. Each DNA sample was amplified in tripli-
cates in separate 96-microtiter plates, which were subse-
quently pooled into one sample. Each 96-microtiter plate 
also included three negative controls (PCR grade water 
used as a template) and one positive control (a random 
DNA sample of one of our pure bacterial cultures was 
used as a template). Amplicons were then purified from 
oligonucleotides by SAP-Exo kit (Jena Bioscience GmbH, 
Germany). 1 µg of purified amplicon served as a template 
for library construction using KAPA HyperPlus Kit in 
combination with KAPA UDI primer mixes (Kapa Bio-
systems, Massachusetts, USA). Amplicon’s size selection 
of the final libraries was done by KAPA Pure Beads (Kapa 
Biosystems) and its effectiveness was checked on 1% aga-
rose gel (SeaKem® LE Agarose, Lonza Group Ltd, Basel 
Switzerland). The amplicons size was around 300 bp. The 
quality of the ligated library was quantified using the Eli-
Zyme Library Quantification Kit (Elisabeth Pharmacon, 
Brno, Czechia). Library sequencing was done on the Illu-
mina MiSeq platform (San Diego, California, USA) on a 
2 × 300  bp paired-end reads run performed at CEITEC 
institute (Brno, Czechia).

Amplicon analysis
Sequencing data were processed using QIIME 2.0 2021.8 
[35]. Raw reads were demultiplexed and quality filtered 
using the q2-demux plugin. Afterwards, reads were 
denoised using the DADA2 algorithm [36] and a feature 
table with counts of amplicon sequence variants (ASVs) 
per sample was produced. Taxonomy was assigned 
using the q2‐feature‐classifier classify-sklearn [37] using 
a trained naïve Bayes classifier to assign taxa from the 
EzTaxon database (version 1.5). Rarefaction analysis of 
final ASV tables was performed to assess the complete-
ness of the dataset and the admissible data resampling 
level for statistical analysis. Diversity metrics and taxo-
nomic classification were also carried out in QIIME2. 
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Amplicon sequences were deposited at the NCBI’s Gen-
Bank database under the Bioproject PRJNA888454.

Comparative analysis and tree construction of the 
metabarcoding sequences and the 16 S rRNA sequences 
of the isolates was performed on MEGA X software [38], 
which were based on the ClustalW all nucleotides align-
ment [39, 40]. The initial tree for the heuristic search was 
obtained automatically by applying Neighbor-Joining and 
BioNJ algorithms to a matrix of pairwise distances esti-
mated using the Maximum Composite Likelihood (MCL) 
and the phylogenetic trees were generated following the 
Maximum Likelihood method and Tamura-Nei model 
[41]. Type strain sequences were collected from the 
EzTaxon database.

Lignocellulose-related activity
To evaluate the capacity of the strains to produce hydro-
lytic enzymes of wood compounds, the in vitro hydrolysis 
of cellulose, xylan, starch, and pectin was tested in Petri 
dishes with the corresponding substrate added to TSA 
medium as previously reported [42, 43]. Carboxymethyl 
cellulose (CMC) (Sigma-Aldrich, Darmstadt, Germany) 
at 0.2% was added into the medium as a source of non-
soluble cellulose for assessing cellulase activity. Beech-
wood xylan (Sigma-Aldrich, Darmstadt, Germany), 
potato starch (Sigma-Aldrich, Darmstadt, Germany), and 
citrus peel pectin (Sigma-Aldrich, Darmstadt, Germany) 
at a concentration of 1% were respectively added to the 
media for assessing xylanase, amylase, and pectinase 
activity. Five-microlitre drops of a bacterial suspension 
at McFarland 7 standard concentration were inoculated 
onto the surface of the plates. After incubating for a week 
at 28  °C, all colonies were carefully washed using ster-
ile water. The CMC and xylan plates were stained using 
a 0.1% Congo Red (Panreac Química SLU, Barcelona, 
Spain) solution for 30 min, while the starch- and pectin-
containing plates were stained using the same method 
but with Lugol’s solution (Panreac Química SLU, Barce-
lona, Spain). Three 15-minute washes of a NaCl (1  M) 
solution were performed for removing the excess dye.

Antimicrobial potential
Siderophore production was evaluated on modified 
M9-CAS-agar medium plates as described by Jiménez-
Gómez et al. [44]. The plates, prepared as previously indi-
cated, were inoculated with 7 µL of bacterial suspension 
and kept at 28 °C for a week. The formation of an orange 
halo around the colonies was considered a positive result.

The inhibition of fungi Lecanicillium muscarium CCF 
3297, Beauveria brongniartii CCF 1547, Metarhizium 
anisopliae CCF 0966, Beauveria bassiana CCF 5554, 
Lecanicillium muscarium CCF 6041, Isaria farinosa CCF 
4808, Beauveria bassiana CCF 4422, and Isaria fumoso-
rosea CCF 4401 was tested. These fungal strains were 

selected because they are potentially pathogenic to Ips 
beetles [9, 45, 46]. To do so, the inhibition tests were per-
formed by streaking bacteria on TSA plates and left to 
grow for 5 days, at which time fungi plugs were placed 
next to the bacteria. Then, plates were again incubated 
until the fungi in controls without bacteria had growth 
and growth rates were compared.

Results
Analysis of the diversity of Ips typographus-associated 
bacteria throughout the life cycle
Our analysis of the amplicon sequences of the 16  S 
rRNA V5-V6 hypervariable region obtained at different 
life stages (larvae, pupae, teneral adult, and adult) of I. 
typographus samples showed a relatively wide and chang-
ing bacterial diversity, strongly dominated by the phylum 
Proteobacteria.

We assessed alpha diversity by comparing the Shannon 
indices; according to our results, the bacterial diversity 
was higher in adults (3.6) and larvae (3.5) samples than 
in pupae (2.1) or teneral adults (2.8). Rarefaction curves 
indicated that we obtained enough sequencing depth to 
cover the sample diversity (Supplementary Fig. 1).

We identified amplicons from the phyla Tenericutes 
and Firmicutes in larvae and adults. Actinobacteria were 
found in larvae and teneral adults, and Bacteroidetes 
were only found in teneral adults. When we analysed 
diversity across the different life stages (considering taxa 
represented by 1% or more of the total reads) (Figs. 1 and 
2) we observed that in pupae and teneral adults diversity 
seemed to be strongly dominated by the genus Pseudo-
xanthomonas: 75% and 55.5% of the reads, respectively. 
This genus represented less than 3% of the reads in larvae 
and adults. In larvae, the main genus was a putative new 
Erwinaceae genus (35.7%) which is also present in pupae 
(7.3%), teneral adult (2.6%), and adults (18.3%). The 
Erwinia genus is also ubiquitously present in all life stages 
(18.4%, 11.7%, 2.5%, and 14.8%, respectively). Bacillus 
and Cutibacterium genera were only found in larvae, 
with abundance percentages of 12.8% and 1.3%, respec-
tively. Also, a putative Spiroplasma genus appears in 
larvae, with a 25.7% abundance, and it is absent in other 
beetle life stages but adults (just with 0,2% abundance). In 
pupae we detected a putative new bacterial family (2.7%) 
that was also found in larvae (0.4%). Regarding teneral 
adults, two groups were only found in this stage: Rhizo-
bium (14.2%) and a putative Chitinophagaceae genus 
(7.3%). Although, the second most represented taxon was 
a putative Enterobacterales genus (15.5%) that was also 
present in the other stages (2.1%, 2.5%, and 0.8%, respec-
tively). Finally, in adults we found Enterobacter (34.5%), 
a putative Lachnospiraceae genus (22.5%), Ochrobactrum 
(2.7%), and Citrobacter (1.4%) that are not present in the 
other stages.
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Cultured-based analysis of the diversity of Ips typographus-
associated bacteria
We obtained 123 bacterial isolates from different life 
stages of the bark beetle I. typographus, which were 
identified and classified according to the life cycle stage 
in which they were isolated, phylum, family, and genus 
(Supplementary Table  1). The isolates were included 
within the Proteobacteria (Pseudomonadota) (7 families), 
Firmicutes (Bacillota) (5 families), and Actinobacteria 
(Actinomycetota) (5 families) phyla. The results showed 
that the lowest degree of diversity at the family level 
was detected in the teneral adult (3 families) and pupal 
(5 families) stages, whereas isolates from the larval stage 
belonged to a total of 16 different families.

Similarly, at the genus level we found the highest 
diversity at the larval stage, followed by the adult stage. 
By contrast, in the pupal and teneral adult stages, diver-
sity was at its lowest. Pseudomonas and Erwinia were 
found in all the life stages of I. typographus; meanwhile, 
Staphylococcus and Curtobacterium were found in all 
life stages except in teneral adults and larvae, respec-
tively. On the contrary, Bacillus was only detected in 
larvae and adults, Microbacterium in larvae and ten-
eral adults, Kocuria in adults, and Brevundimonas and 
Agrococcus were only isolated from pupae. We also 
isolated Aeromicrobium, Caballeronia, Frigoribacte-
rium, Massilia, Nocardioides, Ornithinibacillus, Pae-
nisporosarcina, Pseudoxanthomonas, Psychrobacillus, 

Streptomyces, Aerococcus, Paenibacillus, Acinetobacter, 
and Micrococcus specifically from larvae (Fig. 3, Supple-
mentary Table 1).

Comparative of taxa distribution: massive amplicon 
sequencing vs. culture collection
When we compared the diversity obtained from both 
the amplicon sequence variants (ASVs) and the isolates’ 
16  S rRNA gene sequence analyses, we observed that 
the Erwiniaceae family was one of the most abundant 
throughout the different life stages. However, this was not 
the same for Xanthomonadaceae, which was the other 
most abundant family according to the ASV analysis, 
but for which we only isolated one strain (larvae stage). 
Conversely, we detected Pseudomonas in all life stages, 
according to the isolates sequence analysis but in the case 
of the ASV analysis, Pseudomonas was in all stages but 
the larval stage (≈ 0.2% of total abundancy). Similarly, 
we isolated Bacillus in larvae and adults, but only found 
ASVs belonging to this genus in larvae. We isolated Cur-
tobacterium strains in larval, teneral adult, and adult 
phases, but we only found them in teneral adults and 
adults ASVs. Meanwhile we isolated Staphylococcus in 
all stages, except teneral adults, but their ASVs were only 
found in larval and adult samples. Each of these genera 
represented about 0.1% of total ASVs abundance.

Considering the most representative genera obtained in 
the culture-independent approach and the abundance of 
isolates obtained in the cultures, we decided to evaluate 

Fig. 1  Top taxa distribution over the different life stages. Only those taxa that represent 1% or more of the total reads have been included. (A) Family level. 
(B) Genus level. Larval (L), pupae (P), teneral adult (TA), and adult (A). (T) Mean values amongst all samples
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(i) The evolution of these taxa along the different phases 
of the beetle’s lifespan and (ii) the similarity among ASVs 
and sequences obtained from Erwinia, Bacillus, Pseu-
domonas, Curtobacterium, Pseudoxanthomonas, and 
Staphylococcus isolates.

We observed that Pseudoxanthomonas genus was 
dominant in pupae and teneral adults, but barely pres-
ent in larvae and adults. Conversely, Erwinia and the 
potentially new Erwiniaceae taxon are dominant in lar-
vae and adult phase meanwhile their presence is lower in 
the intermediate stages. Bacillus was only found in lar-
vae (Supplementary Fig. 2A). We found Staphylococcus in 
larvae and adults; Pseudomonas in all stages but larvae; 
and Curtobacterium in teneral adults and adults (Supple-
mentary Fig. 2B).

Considering the importance (abundance) of these gen-
era within some life stages, we performed a phylogenetic 

analysis on each of these taxa together with type strains 
to evaluate the taxonomic placement of the isolates and 
the ASVs (Fig. 4).

In the Erwinia group phylogenetic tree (Fig.  4A and 
Supplementary Fig.  3) we found 3 isolates and 6 ASVs 
grouped close to Erwinia typographi DSM 22,678T and 
an isolate and an ASV close to Erwinia tasmaniensis 
Et1/99T. The remaining isolates, but two, were grouped in 
two clades and no other type strain of the genus clusters 
with them. One of the clades included 2 ASVs. As for the 
rest of the ASVs, most were grouped in 4 independent 
clades with no type strains of validated species of the 
genus.

To further explore the phylogeny of our isolates, we 
calculated similarity level and constructed a phylogenetic 
tree including the whole 16 S rRNA sequences from the 
isolates of this work identified as Erwinia and those of 

Fig. 2  Taxa abundancy fluctuation over the different life stages. Only those taxa that represent 1% or more of the total reads have been included. (A) and 
(B) Family level, (C) and (D) Genus level. Larval (L), pupae (P), teneral adult (TA), and adult (A)
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the type strains of the validated Erwinia species. In this 
tree we observed 3 isolates sequences grouped with E. 
typographi DSM 22,678T and one next to Erwinia bill-
ingiae CIP 106,121T; in both cases, the similarity lev-
els among our sequences and the sequences of the type 
strains are above 99.3%, suggesting that these isolates 
can be identified within those two species. However, 
the remaining isolates were grouped into four different 
clades, 2 of them with single isolates, and no type strains 
of validly published species appear within these clades; 
moreover, the similarity levels between the sequences of 
these isolates and those of type strains of the genus are 
≤ 98.4%; whereas the similarity among the sequences of 
some of the type strains of different species are higher 
(Supplementary Figs. 4 and 5).

In the Pseudomonas tree, the sequences of one iso-
late from larva, one isolate from pupa, 14 isolates from 
mature adults, and an ASV sequence are in the same 
clade as Pseudomonas bohemica IA19T (Fig.  4B). Simi-
larly, in the case of Staphylococcus, 2 ASVs and the 
sequences of two isolates from adults are grouped with 
Staphylococcus warneri ATCC 27,836T (Fig. 4D).

Assessment of bacteria isolated from I. typographus to 
hydrolyse bark complex molecules
Since I. typographus beetles cannot metabolize complex 
sugar molecules from the host tree, we tested the ability 

of the isolates to hydrolyse polysaccharides that can be 
found in the Spruce tree bark, which would suggest that 
the bacteriome might aid in the nutrition of the beetle. 
We found that almost 61% of the isolates showed in vitro 
pectinase activity (Figs. 4 and 5). None of the strains iso-
lated from pupae showed this activity, whereas around 
81% of strains isolated from adults and 59% of strains iso-
lated from larvae hydrolysed pectin. Finally, almost 57% 
of the strains were able to hydrolyse starch, although the 
rate heightens to 83% in the adult group and is below 37% 
in the rest (Figs. 4 and 5).

On the other hand, only eight isolates hydrolysed 
xylan − Curtobacterium flaccumfaciens CYA5A, isolated 
from teneral adults, Bacillus tequilensis C3L6B, Pae-
nibacillus provencensis C3L11A and C3L11B, isolated 
from larvae and Pseudomonas typographi CA3A (adult), 
C2L11, C2L12B, and C2L12C (larvae)−, but around 45% 
of the isolates had in vitro cellulolytic activity (Figs. 4 and 
5), most of them adults (≈ 64% within this group) includ-
ing Erwinia strains originating from all life stages and 
Bacillus strains coming from adults and larvae.

Out of all the isolates, strains C3L6B, CA3A, C2L11, 
C2L12B, and C2L12C were able to hydrolyse cellulose, 
xylan, starch, and pectin. Furthermore, thirty-two strains 
belonging to the genera Erwinia, Bacillus, Pseudomonas, 
Paenibacillus, and Curtobacterium showed cellulase, 
pectinase, and amylase activity. Also, a strain identified as 

Fig. 3  Taxonomic distribution of the isolates. 16 S rRNA sequences were used to identify and cluster isolates over different taxonomic levels and life 
stages. (A) family and (B) genus. Larvae (L), pupae (P), teneral adult (TA), and adult (A). Also, bars summarizing all the sequences are included (T)
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Fig. 4  Phylogenetic tree representing distances among V5-V6 hypervariable regions of 16 S rRNA sequences from isolates of this study and ASVs identi-
fied as Erwinia, Pseudomonas, Pseudoxanthomonas, Staphylococcus, Curtobacterium, and Bacillus, respectively. Also, in each tree, closely related type strains 
and Escherichia coli genus type strain sequences are included to provide phylogenetic context. Coloured zones include group of sequences close or 
separated to the type strains of the genus
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C. flaccumfaciens, isolated from a teneral adult, showed 
cellulase, pectinase, and xylanase activities (Figs. 5 and 6).

Antifungal capacity
Multiple biotic and abiotic threats menace I. typogra-
phus beetles during their life cycle, with entomopatho-
genic fungi being one of them [1, 9]. Thus, we evaluated 
the potential of the associated bacteriome to antagonize 
these fungi.

Firstly, we inoculated our strains on M9-CAS agar 
plates to study their capacity to produce siderophores, 
since these molecules are known for their antimicrobial 
capacity [46]. In total, 52.1% of our strains produced sid-
erophores (Fig.  5). We observed that Pseudomonas and 
Bacillus strains isolated from larvae, teneral adults, and 
adults produced siderophores. Also, Erwinia strains from 
larvae, pupae, and adults, and Curtobacterium strains 
from larvae, teneral adults, and adults. Only Staphylococ-
cus strains isolated from adults and pupae produced sid-
erophores. We also observed that strains belonging to E. 
typographi and P. bohemica species, which were isolated 
from larvae, pupae, and adult phases, produced these 
molecules. This is also the case for P. typographi and 
Bacillus licheniformis strains isolated from larvae and 
adults (Fig. 6).

Secondly, we carried out an in vitro antifungal assay 
to evaluate the capacity of our isolates to produce 

metabolites that antagonize entomopathogenic fungi. We 
used 8 different Ips entomopathogenic strains belonging 
to the genera Lecanicillium, Beauveria, Metarhizium, 
and Isaria. Our results (Fig.  5, Supplementary Fig.  3) 
showed that only 5 strains, all isolated from larvae, exhib-
ited no antagonistic activity to any of these fungi: C1L8A 
and C1L8B (Aerococcus), C3L21B (Bacillus), C3L26 
(Paenibacillus), and MMI22 (Curtobacterium). Mean-
while, 95 strains were antagonistic to these fungi, being 
strains belonging to the genera Erwinia, Pseudomonas, 
Brevundimonas, Bacillus, Nocardioides, Staphylococ-
cus, Acinetobacter, and Streptomyces. Of these, 37 strains 
obtained from larvae (13), pupae (1), teneral adult (1) and 
adults (21) strongly inhibited all fungi, including strains 
CA1A, CA8A, AC4, AC5, AC6, and AC8 (E. typographi), 
AC3(E. billingiae), and MMI19 (E. amylovora), which 
might belong to potentially new taxa included in the 
Erwiniaceae group. Other isolates with strong inhibitory 
capacities were AC7 (E. amylovora), CP9B, AC19, AC48, 
AC50B, AC61, AC62, and AC63 (P. bohemica), CA1C, 
CA5A, and CYA15 (P. helmanticensis), CP10 (Brevun-
dimonas bullata), C3L6B (B. tequilensis), C3L22 (Bacillus 
halotolerans ATCC 25,096T), C2L5C, C2L5D, and C2L6B 
(Bacillus butanolivorans), C1L5A (Bacillus mycoides), 
MMI4A and MMI4B (Bacillus piscis), MMI6 (Bacillus 
badius MTCC), C1L10 (Nocardioides allogilvus), AC18, 
AC88, AC90, and MMI12C (Bacillus licheniformis), 

Fig. 5  UpSet Graph representing the number of strains with solubilizing activity of one or more of the complex polysaccharides tested
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Fig. 6  Phylogenetic tree constructed from isolate’s 16 S rRNA sequences. Dots indicate In vitro metabolic capacities. If dots are filled up in purple, total 
inhibition, if dots are not filled, strong inhibition against Beauveria bassiana CCF4422 (1), Beauveria bassiana CCF5554 (2), Beauveria brongniartii CCF1547 
(3), Metarhizium anisopliae CCF0966 (4), Lecanicillium muscarium CCF3297 (5), Lecanicillium muscarium CCF6041 (6), Isaria fumosorosea CCF4401 (7), and 
Isaria farinosa CCF4808 (8), respectively from inside to outside the circumference. Dots coloured differently and rectangles indicate other features, as 
indicated in the legend
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AC29 (Acinetobacter baumannii), AC71 (S. warneri), and 
MMI15B (Streptomyces albidoflavus).

Discussion
The I. typographus beetles are devastating Norway 
Spruce woodlands in Europe due of population outbreaks 
caused by the climate change [1, 48]. Some authors 
have proposed that it’s bacteriome harbours ecologi-
cally important metabolic capacities potentially benefi-
cial to the insect throughout its life cycle, which in turn 
could help it to overcome a hostile environment [1, 11, 
12, 14]. Nevertheless, only a few studies exist that have 
embarked upon the composition of the bacteriome of the 
I. typographus bark beetle and its ecological role. Here 
we analyse the diversity of the bacteriome associated to 
the beetle during its different life stages by comparing the 
sequences of isolates and metabarcoding identifications. 
In addition, through in vitro assays, we have examined 
the metabolic capacities of the isolated strains and their 
potential roles in the host’s ecology.

Concerning the culture-independent analyses, it is 
reasonable to consider that the core bacteriome of I. 
typographus is highly dominated by the phylum Pro-
teobacteria. We found families Xanthomonadaceae and 
Erwiniaceae to be predominant. These results agree with 
those presented by previous studies [17–19]. Although, in 
the metabarcoding analyses performed by Chakraborty 
et al. (Rouchovany, Czech Republic) [17] and Fang et al. 
(Jingouling Forest Farm, China) [18] hypervariable region 
V3-V4 was used instead of V5-V6, which was selected for 
our study and that of Veselská T. et al. (Protected Land-
scape Area Křivoklátsko, Czech Republic) [19] which 
can cause biases in the results [49]. Additionally, a puta-
tive undescribed genus from the Enterobacterales order 
is also present in all life stages, which was also found in 
other studies [18, 19]. Although Fang et al. [18] did not 
study teneral adults, and they split male adults from 
females. Nevertheless, they also observed that Erwinia 
were abundant in larvae and diminished at pupal stage, 
vice versa occurs with Pseudoxanthomonas. Chakraborty 
et al. [17] results showed Rahnella and Raoultella gen-
era to be among the most abundant, these two were not 
found in our amplicon sequences, and the potentially 
novel Enterobacterales genus was not found by them. 
Nevertheless, Pseudomonas [19], Acinetobacter, and 
Streptococcus genera were also found in these studies [17, 
18].

In our collection of isolates, strains belonging to Pseu-
domonas and Erwinia were amongst the most abundant. 
Moreover, our results also indicate that these genera are 
present over the whole life cycle of the beetle. Erwinia 
strains have already been related with beneficial traits in 
other insect hosts, shortening maturity time or heighten-
ing the oviposition rates [50]. Meanwhile, Pseudomonas 

has been proposed as an important taxon in bark beetle 
insects with different potential functions within their 
ecology [51]. Most of these strains were identified as P. 
bohemica, P. typographi, and E. typographi. All of them 
were firstly isolated from Ips beetles, the last two spe-
cifically from I. typographus [21, 22, 27]. In the case of 
Staphylococcus and Curtobacterium taxa, these were 
present in larval and adult stages and pupae and teneral 
adults respectively. Bacillus isolates encompass the most 
abundant genus in larval samples and were also present 
in adults. Strains belonging to the Micrococcus genus, 
previously isolated from Ips insects, were also identified. 
In contrast to the information provided by previous liter-
ature, we did not find Rahnella, Serratia, or Arthrococcus 
strains [20, 52, 53].

Our results of the metabarcoding alpha diversity 
(Shannon indices) and the bacterial communities isolated 
indicated an evolution of the bacteriome along the differ-
ent life stages. Roughly, in the larval stage we observed 
a high degree of diversity, which decreased in pupae and 
remained lower during the teneral adult phase, but then 
recovered in adults. This trend was differently or not 
observed by other authors [18, 19], but it was similar in 
the case of the bark beetle Dendroctonus rhizophagus, 
although in this case teneral adults were not assessed 
[11]. Probably, this evolution in the bacteriome compo-
sition is caused by the morphological transformations of 
the beetle metamorphosis, which change the environ-
mental conditions (host) for the bacterial community. 
However, a few taxa seem to remain present, suggesting 
an ecological role for the beetle independently of the life 
stage. In this sense, it has been observed that most of 
the bacteria associated with I. typographus beetles are 
acquired from the phloem [19], but vertical transmission, 
from adults to descendants, of some taxa might also be 
possible, as seen in other insects [54].

Additionally, we explored the potential ecological role 
of these bacterial strains in connection with two relevant 
aspects of the beetle: access to non-digestible carbon 
sources and protection against fungal entomopathogens. 
For some isolates, the capacity to hydrolyse CMC, xylan, 
pectin, and starch (all of them present in the inner bark) 
was promising. B. tequilensis and P. typographi strains 
originating from larvae and adults were able to strongly 
hydrolyse all polysaccharides. Another thirty-two strains, 
included into the genera Erwinia, Bacillus, Pseudomo-
nas, Paenibacillus, and Curtobacterium, were capable of 
strongly hydrolyse 3 out of 4 of the polysaccharides tested 
(all but xylan). These results agree with those obtained 
for other bacterial strains isolated from Ips beetles that 
have been shown to synthesize enzymes with the capacity 
to hydrolyse these complex molecules into simpler sugars 
[20, 21]. Bark excavation is performed by the beetles dur-
ing their mature (egg gallery system) and larval (galleries 
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excavation) stages, which coincides with the stages in 
which the strains with the strongest hydrolytic capaci-
ties were obtained. Furthermore, according to our results 
bacteria associated to adults are more likely to show 
these activities. On the other side, in the massive ampli-
con analysis we found that a putative Chitinophagacea 
new genus was exclusively present in teneral adults. This 
family includes genera related with the hydrolyzation of 
chitin, as that of fungi and beetles [55, 56]. On one side, 
in this stage the beetle cuticle is not fully developed and 
starts to grow thicker [57], on the other it has also been 
observed that fungi sporulates in the pupal chambers, 
and when teneral adult feed they acquire them [58], what 
concurs with Veselská et al. [19] observations: they found 
the lowest fungi ASVs abundance in pupae samples, but 
it increased in teneral adults. These might explain why 
this taxon appears at this life stage.

Also, our findings indicate that strains belonging to the 
Erwiniaceae group and Pseudomonas, Bacillus, Staphy-
lococcus, Streptomyces, Acinetobacter, and Brevundimo-
nas genera can produce siderophores, these molecules 
can help out-compete microbes by reducing available 
iron [46]. Furthermore, the first four genera have already 
been reported to produce siderophores with antifun-
gal activity [47, 59–62]. Strains belonging to the previ-
ous genera along with a Nocardiodes strain exhibited 
strong antifungal activity against 8 different strains of 
entomopathogenic fungi, indicating the production of 
bioactive compounds with antifungal activity. These gen-
era have already been reported to synthesize molecules 
with this activity [63–70] such as a non-polyene antifun-
gal extracted and purified from an S. albidoflavus strain 
[71]. The strongest inhibitory bacteria were isolated from 
larvae, which is reasonable considering it is in the larval 
stage when beetles are most susceptible to the attack of 
entomopathogenic fungi [72]. Although, in the adult 
phase we found the highest rate of strains with strong 
fungi inhibitory capacity.

Conclusion
Our results indicate that isolates within the bacteriome of 
I. typographus beetle have the metabolic potential to pro-
duce different lytic enzymes that hydrolyse complex poly-
saccharides present in the wood, such as cellulose, pectin, 
starch and/or xylan, into simpler, assimilable forms for the 
beetle, potentially providing an additional source of car-
bon. Also, 83.9% of these isolates showed strong in vitro 
capacities to antagonize fungi entomopathogens, suggest-
ing a protective role for the bacteriome. According to our 
results, bacteria with these capacities seem to be enriched 
in the larvae and adult phase. In the other hand, our taxo-
nomical analysis shows that E. typographi, P. bohemica, 
and P. typographi species are repeatedly present within 
the bacteriome of I. typographus beetles, indicating that 

these species might be part of the core microbiome. These 
taxa showed strong capacity to produce lytic enzymes 
and antifungal compounds. These metabolic capacities 
were also observed in isolates included into the Erwinia-
ceae group, which according to our phylogenetic analysis, 
might belong to undescribed taxa that was also found in 
the metabarcoding analysis. Our results also suggest that 
adult beetles were more likely associated to bacteria that 
harbour these metabolic capacities, but bacteria obtained 
from larvae showed strongest inhibitory capacities. Also, 
strains included in Staphylococcus, Acinetobacter, Cur-
tobacterium, Streptomyces, and Bacillus genera have the 
former metabolic capacities but are present in a lower 
frequency. Future studies involving bacterial-insect inter-
actions would provide more insights into the bacteriome 
capacity to be beneficial to the beetle.
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