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Abstract 

We present here POSMM (pronounced ‘Possum’), Python-Optimized Standard Markov Model classifier, which is a new 
incarnation of the Markov model approach to metagenomic sequence analysis. Built on the top of a rapid Markov 
model based classification algorithm SMM, POSMM reintroduces high sensitivity associated with alignment-free 
taxonomic classifiers to probe whole genome or metagenome datasets of increasingly prohibitive sizes. Logistic 
regression models generated and optimized using the Python sklearn library, transform Markov model probabilities 
to scores suitable for thresholding. Featuring a dynamic database-free approach, models are generated directly from 
genome fasta files per run, making POSMM a valuable accompaniment to many other programs. By combining 
POSMM with ultrafast classifiers such as Kraken2, their complementary strengths can be leveraged to produce higher 
overall accuracy in metagenomic sequence classification than by either as a standalone classifier. POSMM is a user-
friendly and highly adaptable tool designed for broad use by the metagenome scientific community.
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Background
Shotgun metagenomics is becoming increasingly popu-
lar in profiling the taxonomic composition of microbial 
communities. Wherein the early applications sought to 
identify the members of microbial communities, further 
advances in sequencing technologies and analysis tools 
are uncovering new information that shines a light on 
hitherto unknown facets of microbiotas and at the same 
time elicits new questions that call for more inquiries 
into microbiotas and therefore further interrogation of 
the metagenomic data. In contrast to 16S based approach 
where the focus is on sequencing only 16S rRNA genes of 

a community, shotgun metagenomics strives to sequence 
the entire nucleotide complement of a microbial com-
munity. While the debate remains open on the efficacy 
of metagenomic profiling through 16S sequencing ver-
sus whole metagenome (shotgun) sequencing (WMS) [1, 
2], it is beyond question that WMS allows for functional 
profiling by targeting the entire genomic repertoire of 
culturable and unculturable organisms in a community.

The increased complexity of WMS datasets demands 
the development of more advanced methods for taxo-
nomic profiling. Such tools are tasked with determin-
ing the taxonomic identities of individual reads arising 
from taxa that may or may not have representation in 
the genome databases. Sequence alignment, the standard 
approach to inferring the origins of nucleotide fragments, 
can establish the taxonomic identity unambiguously only 
if the read originating organism is represented in the 
database. Despite the limitations, alignment algorithms 
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such as BLAST have remained the mainstay in the taxo-
nomic classification of metagenomic reads [3]. Metagen-
omic classification through local alignment has been 
augmented by developing extensions of BLAST, such as 
HS-BLASTN and DIAMOND, which prioritize speed 
to handle the increasingly cumbersome size of emerging 
WMS data [4].

Despite the development of ultrafast alternatives to 
BLAST, the sheer size of metagenomic data has reori-
ented the focus of alignment towards hyper-fast exact-
match for queries of distinct k-mers composing the reads 
[5–7]. In 2017, the typical size of a WMS dataset was 
estimated between 1 and 10 Gbp [8], and has continued 
to grow as the associated costs and technological hur-
dles of sequencing shrink. The advent of third-generation 
sequencing has further amplified this big data problem in 
metagenomics [9–12], and the traditional alignment-free 
approaches adapted for use in metagenomic taxonomic 
classification are continuously being rendered obsolete 
despite typically offering higher sensitivity across large 
phylogenetic breadth [5, 13–15].

Alignment-free methods offer a more robust higher 
level of taxonomic abstraction for metagenomic 
sequences compared to methods based on alignment, 
particularly when the query read originating genome is 
elusive [14, 16]. Recent years have seen a resurgence of 
Markov model based methods for metagenomic classi-
fication [16–19]. While no current Markovian approach 
outpaces the optimized alignment schema of tools such 
as Kraken or CLARK in terms of the turnover rate [5, 6], 
new optimized algorithms have brought Markov models 
back as a realistic alternative with reasonable runtimes in 
the context of WMS analysis [14, 16, 17]. While classifica-
tion speed is certainly important, accuracy is paramount, 
and the metagenomic scientific community should have 
the options to choose one over the other, or perhaps the 
best trade-off between the two, based on their priorities 
and needs.

One of the biggest hurdles in taxonomic classification, 
particularly for reads where the closest identified rela-
tive may not share even a single oligomer of reasonable 
length, is the estimation of confidence for matches. The 
probabilistic scoring by Markov models does identify the 
best matching model (genome) to the read but offers little 
beyond this. Whether the best hit represents the source 
organism the read originated from is always in question 
as this does not provide insight into the strength of the 
relationship between a model and the read. A frequently 
used Markov model based program, PhymmBL, intro-
duced polynomial functions accounting for read length, 
Markov model order, and taxonomic level to generate 
confidence scores in later revisions of the software [20], 
though the underlying methodology was not clearly laid 

out. Alignment based program Kraken2 offers a classifi-
cation score based on the frequencies of taxon-specific 
k-mers, but can vary greatly with the database used, and 
quickly becomes restrictive, particularly for taxa with 
highly similar k-mer representations [21].

Combining complementary methods has seen success 
as a strategy to raise the accuracy bar in taxonomic clas-
sification. PhymmBL is an example of such an approach 
that exploited the complementary strengths of interpo-
lated context models (ICMs) generated by GLIMMER 
[22] and the local alignment with BLAST [23] within an 
integrative framework to classify reads with higher sensi-
tivity and precision than by either of the standalone pro-
grams. Such combinations work best when the strengths 
of each method can address the weaknesses of the other 
[24]. For modern classifiers built on exact k-mer align-
ment, precision can be very high. Sensitivity, however, 
is a usual weakness, with tools such as Kraken failing to 
align over 68% of reads from real metagenomic datasets 
[5].

In what follows, we introduce and describe a new 
metagenomic classifier, POSMM (pronounced ‘Pos-
sum’), named after Python-Optimized Standard Markov 
Model algorithm. POSMM leverages higher accuracy of 
alignment-free, Markov model based approach for taxo-
nomic abstraction as both a standalone program and a 
component program for WMS read classification. Build-
ing Markov models of genomes and scoring of reads by 
the trained models are executed by our previously pub-
lished standard Markov model (SMM) based algorithm 
[16], allowing the end-user to select the model order and 
therefore control the accuracy and CPU time trade-off 
(computationally demanding higher order models tend to 
be more accurate, however, this may not be always true). 
The taxonomic classification of reads is performed based 
on a regression-based probability score derived from 
simulated read data. The training dataset was assembled 
by proportionately sampling from genomic regions with 
distinct compositional signatures for each prokaryotic 
species represented in the database; precautions were 
taken to remove the contaminant sequences that may 
distort the conclusions of our machine-learning process. 
This was achieved by employing the Segmented Genome 
Model (SGM) based program, a new C++ incarnation of 
an integrated segmentation and clustering program that 
can rapidly segment genomes and group compositionally 
similar segments into distinct clusters for each genome 
[25–27].

Methods
Database generation
Developing a fully inclusive database is essential for 
training and testing any taxonomic classification method. 
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Only including the highest quality genomes can give 
uncharacteristic advantages during benchmarks that 
may not be reflected in real-world applications. While 
Kraken2 maintains a robust standard database and a 
prokaryotic database, many of the genomes in the mock 
shotgun dataset [28] and identified in the real metagen-
omes were not present in either.

POSMM’s speed is dependent upon the number of 
models (i.e. genomes) being queried. To keep analysis 
within a reasonable time window and give all species 
with sequenced genomes equal representation without 
redundancy, we developed a priority system for collect-
ing representative genomes for all species currently avail-
able in NCBI GenBank. First, the archaeal and bacterial 
assembly summaries were downloaded from the RefSeq 
release FTP site (https:// ftp. ncbi. nlm. nih. gov/ refseq/ relea 
se/). Taxid numbers were used to isolate unique species 
and then a representative genome for each species was 
obtained. Using the NCBI RefSeq terminology, included 
with the assembly summary, we selected ‘Reference’ 
genomes where available, otherwise ‘Representative’ 
genomes. When neither of Reference and Representa-
tive genome was available, the decision was based on the 
assembly level in the order of ‘complete’, ‘chromosome’, 
‘scaffold’, and finally ‘contig’. Species with only a partial 
representation of their genomes were not included in 
our custom database. In the event of a tie, one genome 
was randomly chosen using a random number generator 
from the Python standard library.

The custom database is comprised of genomes of 
29,870 unique species (Additional file 1: Table 1). These 
genomes represent various quality levels; partial genome 
assemblies were not included. Because of variable qual-
ity of the genome assemblies, each genome was sub-
jected to filtering for potentially extraneous sequences. 
The same type of genome set can be downloaded using 
the POSMM “–runmode setup” and “–gtype bacteria/
archaea” parameters.

Furthermore, two additional recently developed pro-
grams KrakenUniq [29] and Kaiju [11] were assessed 
against Kraken2, POSMM, and the hybrid of Kraken2 
and POSMM, on the simulated metagenomes. For Krak-
enUniq, a custom database of bacterial and archaeal 
genomes was built. For Kaiju, the NCBI RefSeq database 
was used.

Real and mock metagenome processing
WGS reads from male human saliva samples (NCBI 
SRA accessions SRR062462 and SRR062415) were 
downloaded using the fastq-dump utility from the sra-
tools suite [30]. Reads were trimmed to remove low-
quality bases and adapter sequences using the fastp 
program [31]. Human DNA sequences were removed 

by aligning reads to the Homo sapiens genome using the 
BWA program [32]. Specifically, reads from each data-
set were first trimmed using fastp 0.20.1 at the default 
setting and were then aligned onto the human refer-
ence genome (build GRC38h, GenBank assembly acces-
sion: GCA_000001405.15) using bwa 0.7.17-r1188 at its 
default setting and “bwa mem” mode. The unmapped 
read IDs from the output SAM/BAM files were parsed 
using samtools (view) 1.11 and were used in pre-pro-
cessing of the original FASTA/FASTQ files, and thus 
removing the human-mapped reads in the process. 
Sunburst diagrams for taxonomic classifications were 
generated using the plotly library for Python 3.8.

NCBI SRA accession SRR8073716, representing 
an Illumina-sequenced metagenome from a previ-
ously published mock microbial community [28], was 
also downloaded via fastq-dump. No read process-
ing was performed prior to analysis by either program 
(Kraken2, POSMM). Direct genome read alignment 
counts were taken from the supplementary files of the 
original study [28].

Markov model classification algorithm
POSMM allows users to build standard Markov models 
or SMMs of orders 10–12 [16] for each genome using 
the genomic sequence fasta files. First, an empty count 
distribution of the specified order is filled with pseudo-
counts. At the start of each run, an “empty” probability 
distribution is also built, representing the initial and tran-
sition probabilities for the specified model order k. Both 
initial and transition distributions are kept global and are 
reset as each genome is modeled. In this way, metagen-
omic fasta files can be indexed respective to the relevant 
positions of the global probability distribution by using a 
vector of memory-address pointers. Maintaining a static 
location in memory and changing the probabilities per 
genome minimize the memory footprint and avoid I/O 
bottlenecks. The average model build time for a prokar-
yotic genome is typically less than 3  s, but can be fur-
ther minimized by storing genomic data on high-speed 
NVMe or RAMDisk drives.

To speed up the throughput, POSMM splits genome 
sets for modelling based on the specified CPU core 
availability, and runs concurrent analyses of the same 
metagenomic fasta file. This is faster than multi-thread-
ing the reads being analyzed, and takes full advantage 
of the increasing RAM availability of the modern com-
puting environments. The biggest bottleneck of SMM, 
and by association, of POSMM, is on-the-fly generation 
of Markov models of genomes, however, splitting this 
across multiple CPU cores bestows the highest perfor-
mance gains to the user.

https://ftp.ncbi.nlm.nih.gov/refseq/release/
https://ftp.ncbi.nlm.nih.gov/refseq/release/
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Machine learning derived score
The motivation for this analysis is conversion of raw 
model probabilistic scores into threshold-based values, 
in order for users to set cutoffs for classification. Note 
that all reads are assigned scores using the model used. 
Deciphering if those scores are useful in the context 
of this study required additional insights, and we have 
attempted here the use of machine learning (regression) 
to provide this.

Most alignment-free metagenomic classifiers tend 
to assign taxonomic identity to all reads regardless of 
whether the source taxa for the reads are represented or 
not in the genome database used for classification [14, 
33]. This can lead to an inflation of misclassifications, 
particularly for reads originating from organisms whose 
genomes are not represented in the genomic databases. 
Higher taxonomic level classification could be more 
accurate as closely related genomes belonging to the 
same taxon may be represented in the database; however, 
even higher level classifications are not immune to this 
as a vast number of reads in a metagenomic sample may 
not have their source representation even at higher taxo-
nomic levels in the database. Alignment based methods 
have largely avoided this problem as alignment provides 
a confidence score for the similarity of the query read 
with a subject sequence in the database. This may reduce 
misclassifications resulting from ambiguous alignments 
[5, 6, 21]. The developers of alignment-free classifier 
PhymmBL took a cue and attempted to address by intro-
ducing a confidence score akin to the alignment score 
[20]. Using simulated training data, 3D-curve fitting was 
applied in order to formulate a similarity score based 
on the read length, taxonomic level, and Phymm score. 
Thresholding based on this score was demonstrated to be 
effective in reducing misclassifications [5]. However, later 
studies have suggested that using this score for threshold-
ing can lower both sensitivity and specificity of metagen-
omic classification [34].

The fidelity of any fitting procedure is dependent upon 
the quality of the training data. Poor taxonomic repre-
sentation, or perhaps taxonomic overrepresentation, 
could explain why certain datasets seem to benefit the 
scoring schema of PhymmBL while others do not [5, 34]. 
To develop a more robust Markov model based scor-
ing schema for phylogenetic classification, we employed 
logistic regression in combination with Bayesian opti-
mization and cross-validation techniques. Furthermore, 
training data was sampled from the compositionally dis-
tinct fractions within each genome [27]. Representation 
of compositionally disparate regions within genomes is 
vital for producing a reliable score. Attempts to generate 
higher order models of compositionally atypical regions 
did not yield desired results as these regions were often 

relatively much small and therefore did not lend them-
selves well to generating reliable higher order models. 
The increase in the number of models also dramatically 
increased the POSMM’s runtime. Isolating these regions, 
and having their representation in the training data, was 
deemed an effective approach for incorporating useful 
evolutionary information encoded within prokaryotic 
genomes.

Simulated training set construction
Training sets were necessary to properly employ regres-
sion in a way that converted the raw model scores to rela-
tive, bound values. Contaminations in GenBank genome 
assemblies are a documented problem. Contaminant 
sources, such as extraneous DNA or adapter sequences, 
must be identified and eliminated. On the other hand, 
horizontally acquired genomic regions are commonly 
present across prokaryotes and are integral parts of their 
genomes [26, 27, 35]. Not adequately accounting for these 
mobile elements in genomes could result in the misclas-
sification of a significant fraction of metagenomic reads.

In addition to horizontal gene transfer, genomic mosai-
cism may arise due to other evolutionary or biological 
factors [27]. These compositionally disparate regions 
need to be accounted for in order to render a genome 
model that adequately represents the variability within 
a genome. For example, there must be distinct models 
representing horizontally acquired regions from dis-
tinct lineages and a model representing the vertically 
transmitted regions in a genome. Accounting for mosaic 
compositional structure of prokaryotic genomes is para-
mount to establishing a high-quality training dataset 
for regression. To address this, we used the Markovian 
Jensen–Shannon divergence (MJSD) based segmentation 
and clustering method that has previously been applied 
to predict genomic islands in prokaryotic genomes [25, 
27]. This enabled isolation of compositionally distinct 
regions within each genome in our custom genome data-
base. An optimized algorithm, based on the same meth-
odology for segmentation and clustering as in IslandCafe 
[27] but designed to be computationally more efficient, 
allowed analysis of genomes at a rate capable of handling 
the entire RefSeq database on a single desktop computer 
within a reasonable time. For our test system based on a 
Ryzen 1600 CPU, our segmentation and clustering algo-
rithm processes approximately 2 prokaryotic genomes 
per minute using all 6 physical cores. The new algorithm 
uses an optimized technique for computing entropies 
to estimate the divergence between DNA sequences 
through MJSD. The new algorithm uses a reverse-cal-
culation step that allows rapid nucleotide-wise iteration 
across the entire genome (see below). This resulted in a 
16-fold reduction of the average time for segmentation 
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and clustering of a prokaryotic genome (average size ~ 5 
Mbp), from over 41  min to approximately 2.5  min. For 
segmentation, we recursively iterated divergence compu-
tation at each position of the genome and segmented at 
the position with the highest MJSD between two result-
ing subsegments provided the associated p-value was less 
than 0.05. The significance threshold for clustering was 
set to  10−5 (readers should refer to Azad and Li [25] or 
Jani and Azad [27] for details).

Clusters less than 0.001% the size of the genome were 
discarded. The remaining clusters were queried for 
human, viral, and adapter sequence contamination using 
BLAST and those with significant similarity to these were 
also discarded. As segments within a cluster are compo-
sitionally similar, we expect these segments to generate 
more similar Markov model scores than the segments 
from different clusters. By using a random number gener-
ator, we generated fragments of random lengths between 
30 and 500 bp from each cluster to generate labeled frag-
ment sampling pools. Randomly sampling fragments 
from each cluster ensured representation of each com-
positionally distinct region in our training data. Multiple 
datasets of 250,000 reads were randomly sampled from 
these pools to generate 10 unique metagenomic train-
ing datasets for each taxon (phylum, class, order, family, 
genus, and species). By cycling through these datasets 
with a Bayesian optimization scheme (see below), we 
generated regression models that were used for taxo-
nomic classification of reads as further discussed below.

Markovian Jensen–Shannon Divergence (MJSD) based 
segmentation and clustering algorithm
In building the training set, we used an advanced method 
based on Markovian Jensen–Shannon divergence (MJSD) 
to obtain the core (native) components of all available 
prokaryotic genomes to ensure the most balanced repre-
sentation was used in our regression. We were able to  
significantly reduce the runtime of genome segmen 
tation and clustering algorithm, as implemented in 
IslandCafe [27], by introducing a reverse-calculation  
step during recursive segmentation. MJSD, entropy,  
andstatistical significance were calculated as described  
in [27]. Specifically, the information content of a  
genome sequence, quantified by the entropy  
function forprobability distribution pi, is obtained as, 
Hm(pi) = −

w
P(w)

x∈A

P(x|w) log2 P(x|w) , where 

P(x|w) is the probability of nucleotide x given the preced-
ing oligonucleotide w of length m (m defines the model 
order, is set to 2 in IslandCafe) and P(w) is the probability 
of oligonucleotide w. A genome is initially segmented by 
iterating the computation of entropy and thus MJSD at 
each position along the genome and identifying the loca-
tion of highest MJSD of (user-defined) significance in the 

genome. This process is then iterated for the resulting 
genomic segments.

Augmenting computational efficiency of segmentation 
and clustering algorithm
IslandCafe reduces the runtime by computing MJSD at 
every l/10000th position along the genome sequence of 
size l to be segmented, however, it computes afresh the 
probability parameters using the oligonucleotide counts 
for each MJSD computation. In contrast, we designed 
our new segmentation and clustering algorithm to iter-
atively computes MJSD at each nucleotide position in 
the genome. However, for each subsequent MJSD com-
putation, rather than estimating the entropies afresh, 
the entropy values from the previous computation were 
adjusted based on only the oligonucleotides that have to 
be included and excluded in the current computation. 
This new approach is not only faster (e.g. over 16X faster 
than the current segmentation and clustering program 
on an E. coli genome of size ~ 4.7 Mbp) but also results 
in higher precision as MJSD computation is performed at 
each position, rather than nth position, in the genome.

Machine learning derived score models
To establish cutoffs based on probabilistic scores, we 
applied machine learning libraries to the raw SMM 
scores [16] of our sampled genomic fragments. We used 
Bayesian optimization to assign hyper-parameters for the 
logistic regression estimators of the scikit-learn library 
[36] using the skopt BayesSearchCV module (https:// 
scikit- optim ize. github. io/ stable/ modul es/ gener ated/ 
skopt. Bayes Searc hCV. html). We also tested SVM estima-
tors with a linear kernel, however, the accuracy was on 
average lower than the logistic regression accuracy for all 
taxa, and the SVM estimators were found to be prone to 
overfitting.

Training data containing raw scores outputted by 
SMM, read lengths, and classification accuracy (True/
False) from the top 50 scores for multiple 250,000 read 
simulated datasets were obtained following SMM analy-
sis at 10th, 11th, and 12th order. We focused on the top 
50 scores for each read of our simulated data, as this 
maintained a balance between the number of correct 
and incorrect classifications for our regression analysis. 
Model order and taxonomic rank specific training data-
sets were obtained, and individual regression models 
were optimized for phylum, class, order, family, genus, 
and species levels at 10th, 11th, and 12th model orders. 
Additional variables, such as read %GC, model %GC, and 
read entropy, were tested as potential training features, 
but they added unnecessary overhead with no appreci-
able gain in classification accuracy following the model 
training.

https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
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The scikit-optimize BayesSearchCV function allows 
for parameter optimization and model fitting using a “fit” 
and “score” method. A threefold cross-validation was 
performed; the training data was randomly split into 3 
groups during each optimization test. The first two sets 
were used for model training and validation respectively 
at various parameter combinations and the third set was 
used for testing the trained regression model. Perfor-
mance was assessed by applying the trained regression 
models to the test data and determining the classification 
accuracy. Unlike grid search optimization, which tests 
all possible combinations of hyper-parameters, Bayesian 
optimization adjusts hyper-parameters based on prior 
performance results. Users are required to set static val-
ues or ranges for the model being optimized. We used 
the sklearn.linear_model.LogisticRegression module of 
scikit-learn as our model generator, and kept settings for 
dual formulation and 15,000 iterations constant for each 
training session. Otherwise with dual = false and lower 
iteration values, the logistic regression classifier may 
fail to converge. The inverse regularization parameter, 
referred to as the C parameter in scikit-learn, was sam-
pled at values ranging from 1e−6 to 1e5. The tolerance 
value parameter was sampled with values ranging from 
1e−7 to 1e−2. The L1 and L2 penalty norms, ‘liblinear’ 
and ‘saga’ solvers, and intercept fitting booleans were 
cross compared for various combinations by the Bayes-
SearchCV function. Optimized parameters are included 
in (Additional file  1: Table  2), and guided final model 
building. All regression models were exported and stored 
in JSON format using the sklearn–json library.

While these models confer the ability to predict taxo-
nomic identity, the predict_proba function of the final 
models provides probabilistic score (value in range 0–1) 
for thresholding, allowing users to prioritize precision 
over sensitivity at increasing stringencies.

Sensitivity, precision, and score calculation
Sensitivity and precision were calculated as described in 
Kraken’s and CLARK’s benchmark studies [5, 6]. In some 
cases, a genome may not have a taxonomic label for all 
ranks (species, genus, family, etc.); previous benchmarks 
have established taxon level accuracy, e.g. genus-level 
sensitivity is computed as A/B where A is the number of 
reads with the genera correctly assigned by a method and 
B is the total number of reads of known genera. Sensitiv-
ity was calculated similarly for all other taxonomic ranks.

Precision is also based on the definition established by 
prior benchmarks, wherein the genus-level precision is 
calculated as X/(X + Z), where X is the number of reads 
with genera correctly assigned by a method, and Z is the 
number of reads with an incorrect genus assignment by 

the method. As with sensitivity, precision was calculated 
independently for each taxonomic rank.

Kraken2’s confidence thresholds were implemented 
using the—confidence parameter. Thresholds of 0.25, 
0.50, and 0.75 were each tested. When the confidence 
threshold option is invoked, Kraken2 classifies a read 
to the lowest taxonomic rank satisfying that confidence 
score.

POSMM’s scores are based on the predict_proba func-
tion of scikit’s logistic regression models. The POSMM 
score for a read to be assigned to a taxon is therefore the 
probability that the read with the specified score, length, 
and model order would be assigned to that taxon based 
on the logistic regression model for that taxonomic rank. 
Each taxonomic rank and each model order have their 
own regression models, and probabilistic scores are cal-
culated independently for each.

POSMM software release
The underlying algorithm for POSMM is written in C++, 
with all user interface and downstream processing writ-
ten in Python. Source code for generating probabilistic 
scores using logistic regression models, written in JSON, 
as well as all other source codes, are available at https:// 
www. github. com/ djbur ks/ POSMM. Simulated metage-
nomes are available at the Kraken2 website https:// ccb. 
jhu. edu/ softw are/ kraken/ dl/ accur acy. tgz, while the mock 
and real metagenomes are available at the NCBI SRA 
[30].

A Python source distribution is also available at https:// 
github. com/ djbur ks/ POSMM/ blob/ main/ dist/ POSMM-
1. 0. tar. gz, which handles all necessary dependencies for 
the end user when installed with pip. Genomes for mod-
eling can be provided by the user with a custom lineage 
map, or downloaded using POSMM’s internal RefSeq 
query system by using the—taxlist parameter and a list of 
GCF numbers.

Results
Underlying POSMM is a modified version of the original 
SMM algorithm previously found superior in both classi-
fication accuracy and computational performance to leg-
acy Markov model variants [16]. The SMM algorithm was 
used to build higher order Markov models (order 10–12) 
of each genome. Each read from a metagenomic dataset 
is then “matched” against the genome models by comput-
ing the probability of the read to be generated by each 
model. Thresholds for predicting the lineage (different 
taxonomic ranks) were established based on taxon-spe-
cific logistic regression models (see “Methods” Section). 
First, POSMM was benchmarked against Kraken2, and 
also against recently published classifiers KrakenUniq 
[29], and Kaiju [11] on simulated metagenomic datasets. 

https://www.github.com/djburks/POSMM
https://www.github.com/djburks/POSMM
https://ccb.jhu.edu/software/kraken/dl/accuracy.tgz
https://ccb.jhu.edu/software/kraken/dl/accuracy.tgz
https://github.com/djburks/POSMM/blob/main/dist/POSMM-1.0.tar.gz
https://github.com/djburks/POSMM/blob/main/dist/POSMM-1.0.tar.gz
https://github.com/djburks/POSMM/blob/main/dist/POSMM-1.0.tar.gz
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Next, the best performing classifiers were employed to 
characterize real metagenomic datasets. Furthermore, a 
combined framework of alignment-free (POSMM) and 
alignment-based (Kraken2) methods was benchmarked 
on the same datasets, as described below.

Real, mock, and simulated metagenomes for classification 
accuracy assessment
To benchmark the performance of alignment-free 
POSMM relative to alignment-based Kraken2, Krak-
enUniq, and Kaiju, we used the simulated metagenomic 
test datasets as used in both the Kraken and CLARK 
benchmarks [5, 6]. The HiSeq and MiSeq datasets repre-
sent artificial metagenomes assembled from real whole-
genome shotgun datasets, whilst the simBA-5 dataset 
features bacterial and archaeal reads with 5X the error 
rate expected in metagenomic sequencing [5, 6].

A predefined mock metagenome, developed as part 
of a study comparing metagenomic sequencing meth-
ods [28], was also used to compare the performance of 
Kraken2 and POSMM, as well as a hybrid of both the 
programs. Developed from Illumina sequencing of a 
synthetic microbial community, the full dataset consists 
of over 213 million paired-end 151  bp reads. The size 
of this dataset makes it computationally prohibitive for 
alignment-free classification methods, such as NBC and 
PhymmBL [5]. Only one of the reads of each pair was 
used for classification. Comparison was also made to 
directed alignment performed in the original study using 
the bwa aligner and the reference genome of each species 
in the synthetic community [28, 32].

We also analyzed two real human saliva metagenomes 
that were earlier used in the Kraken and CLARK bench-
marks [5, 6]. As with the simulated and mock metagen-
omes, a significant proportion (over 20%) of reads within 
these datasets were not classified by Kraken2. Using the 
custom GenBank database, we classified reads in each 
dataset with Kraken2 and POSMM. Reads that could not 
get classified by Kraken2 were re-analyzed with POSMM 
to assign taxonomic identities to reads otherwise deemed 
‘unclassifiable’.

Establishing score cutoffs for classification
POSMM’s thresholding is based on probabilistic scores 
produced by logistic regression models. To evaluate the 
effects of score cutoffs on classification precision and 
sensitivity, reads of each simulated metagenome were 
classified at different cutoffs, ranging from 0 to 0.75 
(Figs. 1, 2 and 3). On the other hand, Kraken2 provides 
confidence scores for thresholding, however, Kaiju and 
KrakenUniq do not and were, therefore, compared with 
the other tools at their default settings. In all cases, sensi-
tivity and precision were calculated as established in the 

Fig. 1 Scatterplot of the genus-level sensitivity (SN) and precision 
(PR) for Kaiju, KrakenUniq, POSMM, Kraken2, and a hybrid of Kraken2 
and POSMM assessed on the simBA5 simulated metagenome 
dataset. For the hybrid of Kraken2 and POSMM, score cutoffs of 0.0 
and 0.25 were used, respectively

Fig. 3 Scatterplot of the genus-level sensitivity (SN) and precision 
(PR) for Kaiju, KrakenUniq, POSMM, Kraken2, and a hybrid of Kraken2 
and POSMM assessed on the MiSeq simulated metagenome dataset. 
For the hybrid of Kraken2 and POSMM, score cutoffs of 0.0 and 0.25 
were used, respectively

Fig. 2 Scatterplot of the genus-level sensitivity (SN) and precision 
(PR) for Kaiju, KrakenUniq, POSMM, Kraken2, and a hybrid of Kraken2 
and POSMM assessed on the HiSeq simulated metagenome dataset. 
For the hybrid of Kraken2 and POSMM, score cutoffs of 0.0 and 0.25 
were used, respectively
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Kraken and CLARK studies (see “Methods” Section) [5, 
6].

For mock and real metagenome analysis, the confi-
dence score threshold was not used with Kraken2. For 
genus-level classification of reads of the simulated and 
mock metagenomes, Kraken2 performed best without 
any confidence thresholds (default setting that allows 
classification to lowest common ancestor based on the 
number of exact k-mer matches in a clade). POSMM 
performed best with cutoffs ranging typically between 0 
and 0.2. As expected, higher cutoffs increased the pre-
cision of POSMM at the expense of sensitivity. For the 
hybrid of Kraken2 and POSMM, a cutoff of 0.25 was 
used for POSMM (default, performance at other cut-
offs are shown in Figs. 1, 2 and 3). When analyzing reads 
from closely related species, we observed that the 0.25 
cutoff did not offer any advantage over no cutoff where 
the taxon assignment was based on the highest scor-
ing genome model. However, when the dataset contains 
distantly related reads, beyond phyla, the use of cutoff 
was observed to improve the classification. In general, 
POSMM emphasized sensitivity over precision, whereas 
Kraken2 emphasized precision over sensitivity. After per-
forming an initial analysis with Kraken2, POSMM can 
be deployed to classify reads that are left unclassified or 
to provide more specific classifications to reads assigned 
only to higher taxa by Kraken2. This approach lever-
ages the complementarity of Kraken and POSMM, that 
is, the speed and precision of Kraken and the sensitivity 
and capability to classify at different taxonomic ranks of 
POSMM.

Simulated metagenome classification accuracy
To assess the classification performance of the previ-
ously described tools we used simulated, mock, and real 
metagenomes. Simulated and mock metagenomes allow 
for performance reporting, as the read identities are pre-
established (simulated metagenomes) or narrowed to 
known members of the originating synthetic microbial 
community (mock metagenomes). Real metagenomes 
offer additional insights into the real-world applicability 
of POSMM and Kraken2, as well as the benefits of com-
bining both approaches, but offer little in terms of the 
accuracy of either method.

For a fair assessment, we used the previously estab-
lished test metagenomes, namely, the simulated 
metagenomes featured in Kraken and CLARK’s origi-
nal benchmarks [5, 6], as well as in other classifier-per-
formance studies [37, 38]. For simulated metagenomes, 
the precision and sensitivity were computed at different 
score thresholds as well as without a threshold.

The precision of Kraken2 was high, close to 0.9 or 
greater, for all three simulated metagenomes (Figs.  1, 2 

and 3). The lowest precision reported by Kraken2, 0.878, 
was observed with the MiSeq metagenome at the cutoff 
of 0.75. However, this is just 0.02 less than the highest 
precision of 0.898 reported by Kraken2 for this dataset 
at no confidence score cutoff. Kraken2 generated lower 
sensitivity overall in comparison to the other tools, 
which declines sharply as the score cutoff was increased 
(Figs. 1, 2 and 3). This was due to increase in the num-
ber of “unclassified” reads as the threshold was increased. 
POSMM, on the other hand, showed higher sensitivity in 
classifying reads in comparison to the other tools (Figs. 1, 
2 and 3). POSMM’s precision was slightly lower on the 
simulated datasets, however, it did not drop below 0.851, 
which was observed with the HiSeq dataset at the cut-
off of 0.75. This was just 0. 042 less than the precision of 
Kraken2 on the same dataset.

Increasing the threshold above 0.25 did not result in 
any noticeable improvement in POSMM’s performance; 
in contrast, this results in significant decline in the sen-
sitivity of Kraken2. We, therefore, created a hybrid of 
POSMM and Kraken2 at threshold for POSMM set to 
0.25 and threshold for Kraken2 set to 0. The POSMM-
Kraken2 hybrid yielded the best overall performance 
(highest F1-score, the harmonic mean of precision and 
sensitivity) on the simulated metagenomes (Fig.  4). By 
first analyzing each simulated metagenome with Kraken2, 
and then applying POSMM only to reads left unclassified 
by Kraken2, the highest F1-scores for all three simulated 
metagenomes could be achieved (Additional file  2: Fig-
ure  1). The most pronounced improvement in perfor-
mance was observed with the SimBA5 dataset, where 
the hybrid approach yielded an F1-score 4.4% higher 
than the next best performing method, Kraken2 (Addi-
tional file 2: Figure 1a). The effect was less obvious with 
the HiSeq and MiSeq datasets (~ 1% change in F1-score), 
but only when compared to Kraken2 without any confi-
dence score thresholding (Figs. 2 and 3). The increase in 
F1-score attained through the hybrid approach is mainly 
due to an increase in sensitivity contributed by POSMM. 
The hybrid approach produced the highest mean sensi-
tivity (0.883) and mean F1-score (0.898). The average pre-
cision of the hybrid approach was slightly lower than that 
of Kraken2 (by 1.6%) but was offset by a gain in sensitiv-
ity through POSMM resulting in superior overall perfor-
mance (Fig. 4).

The overall accuracy (F1-score), averaged over the 
three simulated metagenomes (Hiseq, Miseq, and 
simBA-5), for the hybrid tool was 0.898, while it was 
0.877 for Kraken2. Note this improvement of 2.1% in the 
overall accuracy resulted in over 1,500 more of metagen-
omic reads (of total 30,000) classified correctly. Of the 
total 30,000 metagenomic reads from the three simu-
lated metagenomes, Kraken2 correctly classified 24,913 
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(83.04%) at the cost of 1923 incorrect classifications 
(6.41%) and 3,164 no classifications (10.55%) (that is, 
16.96% incorrectly classified or unclassified). In contrast, 
the hybrid tool correctly classified 26,476 (88.25%) at the 
cost of 2521 incorrect classifications (8.4%) and 1,003 no 
classifications (3.34%) (that is, 11.74% incorrectly clas-
sified or unclassified). That is, 1563 more reads (5.21%) 
were classified correctly by the hybrid method; perhaps 
this was achieved by classifying correctly a large number 
of reads left unclassified by Kraken2 (a decrease to 3.34% 
from 10.55%), with disproportionately a small increase 
in incorrect classification (8.4% from 6.41%). Our results 
highlight the complementary strengths of POSMM (sen-
sitivity) and Kraken2 (specificity) that can be leveraged to 
raise the accuracy bar in metagenomic classification.

KrakenUniq was slightly outperformed by Kraken2. 
Kaiju, although found precise, produced very low sensi-
tivity values on the simulated metagenomes (Fig. 4). Con-
sequently, KrakenUniq and Kaiju generated lower mean 
F1-scores of 0.863 and 0.716 respectively. Therefore, 
these tools were not considered in the further down-
stream analysis.

As expected, alignment-based methods perform well 
in “unmasked” scenarios, when the exact counterparts 
of metagenomic sequences are available in the database 
(with some variations or mutations allowed), and thus 
could be the tools of choice for species level classifica-
tion in such scenarios. Kraken2, for example, compares 
favorably in the species level classification (Additional 
file 1: Table 3). However, as only a very small fraction of 

microbial communities (~ 1–10%) are represented in the 
databases, the performance of alignment-based meth-
ods can decline remarkably in the classification of reads 
whose originating taxa are not represented in the data-
base. To circumvent this problem, we recommend the 
Kraken2-POSMM hybrid approach, wherein Kraken2 
can provide the species-level classification, and for those 
reads that cannot be classified by Kraken2 with the 
desired confidence level (due to a lack of representation 
in the reference database), POSMM can aid in higher 
level of taxonomic classifications. This was demonstrated 
by our analysis of these tools and their hybrid using simu-
lated datasets as discussed above.

Mock metagenome classification accuracy
Next, the performance of POSMM. Kraken2, and their 
hybrid was assessed on the mock metagenome and also 
compared with the genome-directed alignments per-
formed in the original study of the mock metagenome 
(Fig.  5) [28]. No read filtering was performed prior to 
analysis with POSMM or Kraken2. Similar to the simu-
lated metagenome results, Kraken2 left millions of reads 
unclassified at several taxonomic ranks as confidence 
thresholds were introduced. POSMM, as before, helped 
classify reads that were deemed ‘unclassifiable’ by Kaken2 
or even by the original study [28].

Kraken2 did not do well in assigning reads belonging 
to the Halomonas genus, which constituted the ~ 37% 
of the mock community, specifically in the assignment 
of the reads to either of the two Halomonas species 

Fig. 4 Genus-level performance scores, namely, sensitivity (SN), precision (PR), and F1-score, averaged over three simulated metagenomes (Hiseq, 
Miseq, and simBA-5) for Kaiju, KrakenUniq, POSMM, Kraken2, and a hybrid of Kraken2 and POSMM. Kraken2 was assessed without a confidence 
threshold applied. A score cutoff of 0.25 was used for POSMM. For the hybrid of Kraken2 and POSMM, initial classification was obtained with 
Kraken2 without a cutoff, followed by genus level classification of reads left unclassified by Kraken 2 with POSMM at 0.25 cutoff
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(HL-93, HL-4), or to the genus itself. On the other 
hand, POSMM’s read assignment matched closely with 
the genome-directed bwa alignments in the original 
study. The Psychrobacter species of the mock com-
munity (LV10R520-6) was not represented in the 
genome database used for Kraken2 and POSMM, and 
as expected, reads from this species were misclassified 
at the species level. Genus level classification was also 
not up to the mark (Fig. 6), despite the inclusion of 58 
unique Psychrobacter species in the database. POSMM 
aligned more reads specifically to the two Marinobac-
ter species genomes (LV10MA510-1 and LV10R510-
8), and this was also reflected at the genus level, where 
POSMM shared more read alignment to these taxa with 
the direct-alignment (~ 42 million reads) than Kraken2 
with the direct-alignment (~ 11 million reads).

Interestingly, combining POSMM and Kraken2 very 
closely resembled the results of POSMM standalone 
(Fig.  5). As before, the entire mock metagenome was 
first analyzed with Kraken2 without a threshold. Reads 
that were not assigned to any species by Kraken2 were 
then reanalyzed by POSMM with a 0.25 score cutoff, 
and then the taxonomic classifications were merged. 
Given the size of the dataset, this led to a dramatic 
decrease in POSMM analysis time, as Kraken’s first-
pass analysis filtered out over 51% (over 109 million 
reads) of the dataset.

Real metagenome classification comparison
We used both Kraken2 and POSMM to characterize the 
communities of two human microbiome samples previ-
ously featured in multiple metagenomic classification 
benchmarks [5, 6]. Unlike previous assessments, our 

Fig. 5 The number of reads assigned by POSMM at 0.25 cutoff and Kraken2 (no cut-off ) to each species represented in the SRR8073716 mock 
metagenome. For the hybrid of Kraken2 and POSMM, initial assignment was obtained with Kraken2 without a cutoff, followed by genus level 
assignment of reads left unassigned by Kraken 2 with POSMM at 0.25 cutoff. “Direct” refers to read assignment using genome-specified bwa 
alignments in the original study

Fig. 6 Same in Fig. 3 but for genus level. Genera represented in the mock metagenome are shown
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full GenBank database was used for read classification 
by both Kraken2 and POSMM. Datasets SRR062462 
and SRR062415 are both of human saliva samples and 
were filtered for human contaminant reads prior to 
the analysis. Quality-trimming and additional filter-
ing were performed, removing low quality bases and 
adapter remnants.

The proportions of genus classifications were similar 
between Kraken2 and POSMM (Additional file  2: Fig-
ures  2–7). As with the simulated and mock metagen-
omic datasets, Kraken2 left a significant number of 
reads unclassified (> 277,000 reads, > 20%), which were 
assigned by POSMM. Despite the difference in total 
read assignments, the proportions of taxon assignments 
were similar between these classifiers. In agreement 
with the prior analysis [5], Streptococcus, Haemophilus, 
and Prevotella genera represented the majority of reads 
for both programs (Additional file 2: Figures 2–7).

To investigate the reads left unclassified by Kraken2, 
we filtered reads that were not assigned to any taxon 
by Kraken2. These reads were subjected to classifica-
tion by the hybrid of Kraken2 and POSMM, at POSMM 
cutoff of 0.25. Taxonomic classification of the formerly 
unclassified reads was fairly spread out across multi-
ple genera. Bacillus, the genus with least number reads 
assigned to it by Kraken2, had now 12,413 additional 
reads assigned to it by the hybrid program (4.34% of all 
unclassified reads in the SRR062415 dataset). Strepto-
myces that had only 233 reads assigned to it by Kraken2, 
was assigned 9745 additional reads by the hybrid pro-
gram (3.41% of all unclassified reads). Interactive dia-
grams of the classifications by each method, as well as 
the POSMM classification of Kraken2’s unclassified 
reads, built using Plotly and compatible with modern 
internet browsers, are provided as supplementary html 
diagrams (Additional file 2: Figures 2A–7A).

POSMM runtime
POSMM runtime is dependent on model order and 
the number of models used to score the metagenomic 
reads. We examined POSMM’s time to completion 
on a single core versus all 6 physical cores in the use 
of a Ryzen 1600 system. The runtime as a function of 
dataset size, number of models used, and threading is 
shown in (Fig. 7). Dataset size (in reads) had little effect 
on POSMM’s total runtime.

Discussion and conclusions
POSMM echoes the higher sensitivity in the taxo-
nomic inference of traditional alignment-free metagen-
omic classifiers [14, 33]. By simplifying the Markov 
model based approach to taxonomic classification [16], 

POSMM circumvented the computational time barrier 
that has made several alignment-free metagenomic clas-
sifiers obsolete as the dataset size continues to grow [5]. 
While POSMM lacks the speed of k-mer aligners, it does 
have the speed and scalability to analyze large metagen-
omic datasets produced by current sequencers. As an 
accompaniment, POSMM offers to augment the sen-
sitivity of faster though less sensitive alignment based 
metagenomic classification programs. By obviating the 
need for establishing model databases, made possible by 
generating models directly from genomic fasta files on 
the fly, POSMM ushers in a new approach that can be 
easily adapted and restructured to fit with specific needs 
in classification.

POSMM is also highly scalable. The memory foot-
print is entirely based on the size of the dataset being 
analyzed, as metagenomic reads are indexed and kept 
in memory for rapid lookup during score computation. 
Users with fewer resources can split datasets as needed, 
allowing POSMM to run on devices ranging from 
power-efficient laptops to high-performance comput-
ing environments. As the number of CPU cores con-
tinues to increase on desktop computers, the potential 
throughput of POSMM should also scale linearly. The 
simplified underlying codebase for generating SMMs, 
written in C++ 11 and only using standard libraries, is 
also easily portable to the increasingly common ARM 
architecture that continues to expand beyond use in 
mobile phones. The regression score models, which 
are built using the popular scikit library and stored in 
JSON, are also easily modifiable. Being able to easily 

Fig. 7 Runtime (in minutes) of POSMM as a function of number of 
models, number of reads to analyze (size 100 nt), and core count
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adjust the score models to scale to an ever-changing 
and rapidly growing databases, POSMM holds the 
promise to remain relevant in many years to come.
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