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Potato root-associated microbiomes adapt 
to combined water and nutrient limitation 
and have a plant genotype-specific role 
for plant stress mitigation
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Abstract 

Background Due to climate change and reduced use of fertilizers combined stress scenarios are becoming increas-
ingly frequent in crop production. In a field experiment we tested the effect of combined water and phosphorus 
limitation on the growth performance and plant traits of eight tetraploid and two diploid potato varieties as well as 
on root-associated microbiome diversity and functional potential. Microbiome and metagenome analysis targeted 
the diversity and potential functions of prokaryotes, fungi, plasmids, and bacteriophages and was linked to plant traits 
like tuber yield or timing of canopy closure.

Results The different potato genotypes responded differently to the combined stress and hosted distinct microbiota 
in the rhizosphere and the root endosphere. Proximity to the root, stress and potato genotype had significant effects 
on bacteria, whereas fungi were only mildly affected. To address the involvement of microbial functions, we investi-
gated well and poorly performing potato genotypes (Stirling and Desirée, respectively) under stress conditions and 
executed a metagenome analysis of rhizosphere microbiomes subjected to stress and no stress conditions. Func-
tions like ROS detoxification, aromatic amino acid and terpene metabolism were enriched and in synchrony with the 
metabolism of stressed plants. In Desirée, Pseudonocardiales had the genetic potential to take up assimilates pro-
duced in the fast-growing canopy and to reduce plant stress-sensing by degrading ethylene, but overall yield losses 
were high. In Stirling, Xanthomonadales had the genetic potential to reduce oxidative stress and to produce biofilms, 
potentially around roots. Biofilm formation could be involved in drought resilience and nutrient accessibility of Stirling 
and explain the recorded low yield losses. In the rhizosphere exposed to combined stress, the relative abundance 
of plasmids was reduced, and the diversity of phages was enriched. Moreover, mobile elements like plasmids and 
phages were affected by combined stresses in a genotype-specific manner.

Conclusion Our study gives new insights into the interconnectedness of root-associated microbiota and plant stress 
responses in the field. Functional genes in the metagenome, phylogenetic composition and mobile elements play 
a role in potato stress adaption. In a poor and a well performing potato genotype grown under stress conditions, 
distinct functional genes pinpoint to a distinct stress sensing, water availability and compounds in the rhizospheres.

Keywords Shotgun metagenomics, Solanum tuberosum, Solanum phureja, Bacteriophage, Plant–microbe interaction, 
Plasmid, Rhizosphere, Endophytes, Rhizobacteria, Drought

*Correspondence:
Angela Sessitsch
angela.sessitsch@ait.ac.at
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40793-023-00469-x&domain=pdf


Page 2 of 19Faist et al. Environmental Microbiome           (2023) 18:18 

Background
Potato (Solanum tuberosum) is the world´s 4th most pro-
duced staple crop, after maize, wheat, and rice. Potato 
production has been considered to be severely impacted 
due to global warming and drought and a yield decline of 
18–32% in the period between 2040 and 2069 has been 
predicted [1]. Also, this crop typically has a high phos-
phorus (P) demand and low P uptake efficiency [2], and 
P is required for early plant development and for tuber 
production [3]. Efforts are ongoing to improve tolerance 
of potato to various abiotic stresses, primarily to drought, 
by intensive crop breeding, e.g., by enhancing photosyn-
thetic performance [4]. In addition, the plant microbiome 
has the potential to alleviate plant stress [5] and may be 
modulated to improve potato production.

Plant microbiomes, i.e., plant-associated microbial 
communities and their “theatre of activity” [6] are highly 
complex, consisting of bacteria, archaea, fungi, oomy-
cetes, protists, and viruses, and can be essentially found 
in all plant tissues and compartments. Plant micro-
biota are important for plant growth and health and are 
involved in key functions such as nutrient mobilization, 
protection against pathogens or improving plant resil-
ience to abiotic stress [7]. Well studied plant compart-
ments for microbial life include the rhizosphere [8] the 
endosphere [9] and the phyllosphere [10]. The rhizo-
sphere is a hotspot of microbial diversity and activity 
utilizing root exudates and sloughed off plant cells as 
nutrient sources [8]. After colonizing the rhizoplane 
microorganisms may also enter roots, either passively 
e.g., via wounds or actively using cellulolytic enzymes 
and may thrive in the root endosphere and/or translocate 
to above-ground plant tissues [9]. Microbial communities 
in different plant compartments are clearly different from 
each other, indicating strong influence of host-specific 
factors [7, 9]. Whereas microbiota components of the 
rhizosphere at a coarse level are similar for various plant 
species, there is generally a greater influence of the host 
plant on endophytes [7]. In addition, stress conditions, 
plant development and the plant genotype are major 
drivers of plant microbiota [11, 12].

Recent work has indicated that also soil microbiomes 
alter plant fitness and competition under drought [13] 
and that root microbiome compositional changes cor-
relate with drought stress tolerance across plant species 
[14]. Several studies have shown that drought affects 
the composition of root microbiota, particularly favour-
ing monoderm bacteria such as Actinobacteria, which 
are known to be more resistant to desiccation than 
diderms [13–16]. The effect of plant phosphorus star-
vation on plant microbiomes is less well investigated. 
Finkel et  al. [17] recently showed that the phosphate 

starvation response of Arabidopsis has a large effect on 
the plant-associated bacterial and fungal communities, 
whereas different types of P-fertilizers did not show a 
major influence on below-ground microbial communi-
ties [18].

Only few microbial mechanisms are known to be 
responsible for alleviating plant drought stress. Bacte-
ria producing the enzyme ACC deaminase are promi-
nent candidates for the improvement of drought stress 
resilience [19]. This enzyme is responsible for lowering 
the levels of ethylene in the plant by cleaving the plant-
produced ethylene precursor 1-aminocyclopropane-
1-carboxylate (ACC) to ammonia and 2-oxobutanoate, 
modulating ethylene signalling [20]. Other known 
mechanisms include the detoxification of reactive oxy-
gen species (ROS) [21, 22] or modulating abscisic acid 
metabolism [23]. With regard to supporting plants in 
P acquisition, microorganisms are known to solubi-
lize poorly available P pools. Particularly phosphatases 
released by microorganisms mediate mobilization of 
soil P via mineralization of organic P [24].

The plant genotype greatly determines plant traits 
like resilience to drought [25] or P utilization efficiency 
[3], but also influences microbiome structure and func-
tions [26, 27]. Very recently, it has been proposed to 
rather focus on the host phenotype rather than geno-
type as a predictor and readout of microbiome function 
[28]. This proposed view also supports the underly-
ing hypothesis of our work, i.e., that—together with 
other parameters such as stress—the potato genotype 
and particularly the phenotype direct the structure 
and functions of the associated root and rhizosphere 
microbiome. Along these lines we assessed various 
phenotypic traits of ten field-grown Solanum tubero-
sum (eight tetraploids belonging to group Tuberosum; 
two belonging to the diploid group Phureja) genotypes, 
particularly those related to the resilience to combined 
water stress and P limitation and related these traits 
to the plant microbiome. We furthermore had the 
hypothesis that plant genotypes showing a contrasting 
phenotype (like stress resilience) host distinct micro-
biota equipped with different functions to interact with 
plants and to support their stress resilience. To address 
this, we performed a metagenomic analysis of rhizos-
phere microbiomes of two contrasting genotypes and 
particularly investigated potential functions involved in 
the observed plant phenotype. As plasmids and phages 
have been reported to act as drivers of ecological and 
evolutionary processes [29, 30] and are important 
mediators of horizontal gene transfer, we also used the 
metagenomic data to elaborate the effects of stress and 
plant genotype on plasmids and phage communities.
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Results
Ten potato genotypes (Additional file  1: Table  S1) were 
grown in the field with a combined stress of reduced irri-
gation and no phosphate fertilizer (Additional file 1: Fig. 
S1A, B), termed here “combined stress” for simplicity. For 
all measured time points, soil moisture was highest in the 
deep soil layers and reduced in the top soil and was differ-
ent between stress conditions (Additional file 1: Fig. S1C, 
D). Comparing the number of young tubers eight weeks 
after planting, half time to canopy closure, final yield, and 
above ground biomass (foliage) of potato grown under 
combined stress and under conditions without water and 
P limitation revealed that different genotypes exhibited 
different stress responses. The stress effect on tuber yield 
correlated significantly with the effect on above-ground 
biomass (Additional file 1:  Fig. SlE) but a reduced num-
ber of young tubers during tuber filling correlated with 
stress resilience in tuber yield (Additional file 1:  Fig. SlF). 
This indicates that a delay in growth under continuous 
but reduced water supply and P limitation is beneficial 
for stress resilience of the potato plants.

High throughput amplicon sequencing of 166 sam-
ples revealed a total of 5.8 M 16S rRNA gene sequences 

and 3.6  M ITS sequences after removing plant-derived 
sequences. Those were grouped into 20,114 (1302 occur-
ring in at least three samples) different bacterial and 
941 (76) fungal amplicon sequence variants (ASVs). On 
average the samples contained 34 k ± 19 k bacterial and 
21  k ± 18  k fungal ASVs. From two contrasting geno-
types (Desirée = high yield loss under combined stress, 
Stirling = low yield loss under combined stress), we ana-
lysed the functional potential of the rhizosphere micro-
bial communities of plants grown under the different 
stress conditions by shotgun metagenomics. We obtained 
136 M ± 17 M sequences per sample and in total 1633 M 
paired sequences. A 98% subset of all classified reads 
belonged to bacteria, 1.2% to phages, 0.7% to archaea and 
0.1% to fungi. Reads of plasmids summed up to 6.2% of 
all reads classified with the Kraken-Braken method.

Sample type and stress shape the microbial diversity 
and structure of potatoes
The nonmetric multidimensional scaling (NMDS) ordi-
nation of the amplicon dataset showed that the structural 
differences in the microbial community composition 
were mostly influenced by the sample type (Fig.  1A, D 
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Fig. 1 Microbial diversity of potato plants. Beta-diversity of the 166 potato-associated microbiota is shown in a non-metric multidimensional 
scaling (NMDS) ordination based on the Bray–Curtis distance according to sample type (shape of the symbols) and stress (colour) (A, D). Samples 
with similar composition cluster. Significance was calculated using a permutation test. Alpha-diversity indicated (B, E) by the Shannon index and 
(C, F) the number of different ASVs, the richness of a sample. Significance was determined by Wilcoxon-tests. * <  = 0.1, ** <  = 0.05, *** <  = 0.01 
NS = not significant
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environmental fit, bacteria: R2 = 0.79, p value ≤ 0.001, 
fungi: R2 = 0.45, p value ≤ 0.001) followed by stress 
(bacteria: R2 = 0.09, p value ≤ 0.001, fungi: R2 = 0.06, p 
value ≤ 0.001). The calculation of a general linear model 
of the values of NMDS1 resulted in a significant influ-
ence of each sample type on the bacterial composition 
(soil, p value < 0.001; rhizosphere, p value < 0.001; root, 
p value < 0.001) but the fungal rhizosphere composition 
did not differ significantly from the other sample types 
(soil, p value < 0.001; rhizosphere, p value = 0.94; root, 
p value < 0.001). A general linear model of the scores of 
NMDS2 suggested a significant influence of combined 
stress on the microbiota (bacteria: stress, p value < 0.001; 
no stress, p value < 0.001; fungi: stress, p value < 0.001; no 
stress, p value < 0.001). The highest richness (= number 
of different amplicon sequences) was found in the rhizo-
sphere followed by soil and root samples (Fig.  1C, F). 
Both, richness and Shannon Index, revealed a reduction 
in microbial diversity in the rhizosphere under combined 
stress conditions. In roots a significant reduction was 
only observed for bacteria (Fig. 1B, E). Additionally, the 
diversity of archaea, which were analysed by metagenom-
ics only, was increased under combined stress (Shannon 
Index: stress = 3.47, no stress = 3.27, p value = 0.015).

Common stress reactions of the microbial composition 
in various potato genotypes
The most abundant phyla in the rhizosphere included 
Proteobacteria, Actinobacteria, Bacteroidetes, Ascomy-
cota, Mortierellomycota and Basidiomycota (Additional 
file  1:  Fig.  S2). At the genus level the rhizosphere con-
tained mostly Sphingomonas, Flavobacterium, Strep-
tomyces, Mortiella, Solicoccozyma and Pseudeurotium. 
Roots were additionally dominated by the phyla Firmi-
cutes as well as Olpidiomycota and by the genera Bacil-
lus, Paenibacillus and Microdochium (Additional file  1:  
Fig.  S3). Under combined stress conditions Actinobac-
teria, Sphingobacteriales and Variovorax were enriched, 
while Proteobacteria, Flavobacteriales and Olpidiomy-
cota were reduced in roots and the rhizosphere. We 
observed sample type-specific stress reactions like the 
enrichment of Xanthomonadales in rhizosphere sam-
ples and Clostridia in roots under stress conditions. In 
contrast to Xanthomonadales and Clostridia, the abun-
dance of other Gammaproteobacteria and Firmicutes 
was reduced under combined stress (Fig.  2). Similarly, 
different members of the Leotiomycetes showed differ-
ent responses, Theloboales were enriched and Helotiales 
were reduced in the rhizosphere under combined stress.

At the highest taxonomic resolution of the amplicon-
dataset, we identified 174 ASVs showing significantly 

different abundance in one of the two stress treatments 
(Additional file 1:  Table S2): (i) root endosphere: 6 fungal 
and 46 bacterial ASVs; (ii) rhizosphere: 4 fungal and 118 
bacterial ASVs. Interestingly only three ASVs, all belong-
ing to Actinobacteria, were significantly enriched in both 
root and rhizosphere samples under combined stress: 
Nonomuraea sp. ASV_90, Streptomyces sp. ASV_268 and 
Streptomyces sp. ASV_9.

The reduced shotgun-dataset confirmed the enrich-
ment of Actinobacteria and other stress-specific bac-
terial taxa but detected more significant differences in 
Alphaproteobacteria compared to the amplicon data-
set (Additional file  1:  Fig.  S4A). Regarding archaea in 
the reduced shotgun-dataset, Methanococci were more 
abundant under cultivation conditions without water and 
P limitation, while Halobacteriales, Haloferacales and 
Methanomicrobia were enriched under combined stress 
(Additional file  1:  Fig.  S4B). In total 17 good quality 
metagenome assembled genomes (MAGs) were identi-
fied (Additional file 1:  Table S3). Five MAGs (3 Actino-
bacteria, 2 Proteobacteria) were more abundant and four 
(all Proteobacteria, genus Sphingobium) were depleted 
under combined stress (Additional file 1: Table S4).

Genotype‑specific differences in stressed potato plants
The Bray–Curtis distance showed that the microbial 
communities were more similar for samples belonging 
to the same genotype than to different genotypes. Still, 
the main effect on the microbiota is explained by the 
applied combined stress conditions (Additional file  1:  
Fig.  S5A). Concordantly, general linear models revealed 
significant effects for stress and genotype in root and 
rhizosphere samples (Additional file 1:  Table S5). Com-
munity structures according to combined stress and 
genotype were most prominent in the subset of rhizobac-
teria leading to distinct clusters in the PCoA (Additional 
file 1:  Fig. S5B). Noticeable is the separation of the dip-
loid (Additional file 1:  Fig. S5B, dark red and light red) 
vs. tetraploid (other colours) potatoes under combined 
stress. The fungal community in roots and rhizosphere 
as well as the bacterial community in roots were also 
significantly affected by combined stress and genotype 
but less profoundly (Additional file 1: Fig. S5, Table S5). 
In general, the F-value of the factor stress reduced from 
the rhizosphere to the root microbiota (Additional file 1:  
Table S5A) indicating a lower stress effect on root micro-
biota as compared to the rhizosphere. Also, fungi were 
less affected than bacteria. In contrast, the F-value of the 
factor genotype was similar between subsets, indicating a 
constant effect of the genotype on the microbiota (Addi-
tional file 1: Table S5).
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Correlating diversity and microbial abundance with stress 
responses of tetraploid potato plant growth
Different potato genotypes showed different phenotypic 
stress response patterns including effects on final yield, 
foliage, half-time to canopy closure, number of young 
tubers and diameter of the largest young tuber (see also 
Additional file  1: Fig. S1E,F). The abundance of some 
ASVs correlated with the phenotypic stress responses 
of potato plants, which could be grouped in clusters 

(Fig.  3, Additional file  1:  Table  S6). For instance, Xan-
thomonadales sp. ASV_465, Chitinophaga arvensicola 
ASV_499 and Occallatibacter sp. ASV_869 were more 
abundant in the rhizosphere of potato genotypes with 
a stable yield (Fig.  3A, ***, cluster III). In contrast, Fla-
vobacterium sp. ASV_30 in the rhizosphere and Strep-
tomyces sp. ASV_168 in roots were most abundant in 
genotypes that suffered from high yield loss under com-
bined stress. The abundance of most microbes correlated 

Fig. 3 Key microbiota (A rhizosphere bacteria; B rhizosphere fungi; C root bacteria) in stress resilient and suffering genotypes. Columns represent 
microbes, which are numbered according to their amplicon sequencing variant (ASV) and taxonomical position classified in Additional file 1: 
Table S8. Rows indicate the strength of potato plant stress responses. This includes percentual tuber yield loss, weight of foliage loss, delay (del.) 
of half-time canopy closure, differences in number (#) of young tubers and differences in the diameter of the largest young (y.) tuber. Dark pink 
indicates a high abundance of a specific ASV under stress in potato plants suffering in this phenotype, while green indicates a high abundance in 
potato plants resilient in this phenotype. Black frames with Roman numbers, indicate clusters of ASVs correlating with the same stress response 
pattern. Bold ASV-numbers refer to ASVs that correlate with a stress response in roots and rhizosphere samples. Significant spearman correlations 
are determined by a t-test and results are indicated: p value < 0.001: ***; p val < 0.01: **; p val < 0.05: *, p val < 0.1
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highly significantly with a faster half-time canopy clo-
sure (Fig. 3A VI, 3C IV, ***). One example is Dyadobacter 
sp. ASV_47 that correlated to half-time canopy closure 
in root and rhizosphere samples. The fungi Trichocla-
dium opacum ASV_44 and Mortierella hyalina ASV_24 
occurred in the rhizosphere of stress-resilient genotypes 
and correlated with tuber yield (Fig. 3B, I).

The rhizosphere metagenomes of potato plants exposed 
to combined stresses and unstressed conditions have 
distinct functional potentials
Shotgun metagenomic sequencing revealed a huge 
impact of combined stress on gene abundance (Addi-
tional file  1:  Table  S7). Of 17,548 genes and gene frag-
ments in the bacterial dataset, 31% were more abundant 
under stress and 27% were more abundant in no-stress 
samples. More than 2000 stress indicator genes belonged 
to Actinobacteria, represented by Pseudonocardiales and 
Propionibacteriales, whereas 800 genes belonged to Beta- 
and Gammaproteobacteria represented by Xanthomo-
nadales and Comamonadales (Fig.  4A). Merging all 
taxa, we identified 14 functional groups (KEGG C-level, 
Fig.  4B, details in Additional file  1: Table  S8) that were 
more abundant in rhizosphere metagenomes under com-
bined stress conditions, including (i) sugar-, (ii) amino 
acid- and (iii) vitamin/cofactor metabolism as well as (iv) 
base excision repair. Most functions were mainly repre-
sented by Beta- and Gammaproteobacteria under con-
ditions without water and P limitation, whereas under 
combined stress Actinobacteria increased in proportion 
matching the increase of Actinobacteria under the same 
conditions in the amplicon dataset. Within Actinobacte-
ria, taurine and hypotaurine metabolism and terpenoid 
backbone biosynthesis were over-represented in rhizos-
phere metagenomes under combined stress conditions 
while within Beta- and Gammaproteobacteria biofilm 
formation, fatty acid biosynthesis, biotin metabolism 
and mismatch repair were over-represented functions. 
Beyond KEGG C-level we identified KEGG modules 
composed of stress indicator genes (Additional file  1: 
Table  S9) and presented a selection in Fig.  4C. Repre-
sented by Actinobacteria, a glycine betaine/proline sugar-
ABC-transporter was more abundant under combined 
stress. Furthermore, under these conditions underlying 
genes for trehalose biosynthesis were more abundant in 
rhizosphere metagenomes.

In addition to drought, plants were exposed to P limi-
tation. Concordantly, the OmpR two-component sys-
tem involved in phosphate assimilation and a phosphate 
ABC-transporter were more abundant under combined 
stress but only in Actinobacteria (Additional file  1: 
Table  S9). Also, the heme biosynthesis, pentose phos-
phate and leucine degradation pathways were more 

abundant under combined stress (Fig.  4C). Rhizosphere 
microbiota of stressed plants showed a higher genomic 
potential to produce (i) isoprenoids (C5 non-mevalonate 
pathway, C10–C20) and (ii) precursors of aromatic acids 
and secondary metabolites via the shikimate pathway 
(Fig. 4C). Summarizing the reads at the higher functional 
level, KEGG B, revealed an increased abundance of reads 
assigned to biosynthesis of secondary metabolites such 
as geosmin (Additional file  1: Table  S8). Among the 12 
functional groups more abundant in samples from condi-
tions without water and P limitation (Fig. 4B, and more 
detailed in Additional file  1: Table  S8, FDR < 0.01) were 
cell motility and protein export. Surprisingly, the func-
tion glutathione metabolism and four genes similar to 
the glutathione-S-transferase being involved in detoxi-
fication, were more abundant in metagenomes under 
conditions without combined stress (Additional file  1: 
Fig. S6B). Within Beta- and Gammaproteobacteria glu-
tathione metabolism was over-represented in samples 
from conditions without water and P limitation along 
with carbohydrate metabolism and carbon fixation in 
prokaryotes (Fig.  4B). Moreover, all five orthologous 
gene families of urea ABC-transporters were enriched in 
rhizosphere metagenomes under non-stresses conditions 
(Additional file 1: Table S9A).

Functional potential in rhizosphere metagenomes differ 
between a well and a poorly performing potato genotype
Out of the well and poorly performing genotypes we 
selected two that grew next to each other, ensuring that 
they had access to the same pool of soil bacteria for rhizo-
sphere enrichment. Furthermore, we selected Desirée as 
a poor performer because it is a widely grown cultivar. 
Desirée produced 7.7 kg tubers under stress, which rep-
resents a loss of 55% compared to cultivation conditions 
without combined stress, while Stirling performed better 
producing a yield of 9.3 kg, i.e., a loss of only 38%. Under 
combined stress 1562 genes from Xanthomonadales 
(Fig. 5A, green) were more abundant in the Stirling rhizo-
sphere metagenomes while 1703 genes from Pseudono-
cardiales (dark red) were more abundant in the Desirée 
metagenome (Additional file 1: S10). In samples from the 
treatment without stress application Xanthomonadales 
were more abundant in Desirée and Pseudonocardiales 
more abundant in Stirling (Additional file  1:  Fig.  S7). 
Propinobacteriales (more abundant in Stirling) and Fla-
vobacteria (more abundant in Desirée) preferred one 
genotype regardless of the stress conditions.

Distinct functional groups dominated, i.e., were most 
abundant in sequence numbers by distinct taxonomic 
groups (Fig.  5B). In Desirée, Actinobacteria together 
with Beta- and Gammaproteobacteria dominated most 
functional groups while in Stirling mainly Beta- and 
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Fig. 4 Distinct functions and genes between rhizosphere metagenomes from potato plants cultivated under combined stress and no stress. A 
The number of significant (FDR < 0.05) differently occurring genes per best taxonomic level. B Bar sizes show the mean abundance in normalized 
reads of a function. Filled bars indicate a significant (FDR < 0.01) fold change between stress treatments. Whether a function is most abundant 
in Actinobacteria (Ac) Beta-Gammaproteobaceria (BGP) or Alphaproteobacteria (AP) is indicated in the first column for non-stressed and in the 
second column for stressed metagenomes. Comparing the abundance of functions within one taxonomic group revealed weather a function is 
significantly (FDR < 0.01) overrepresented in rhizosphere metagenomes from potatoes cultivated under stress or no stress. C Functional modules 
that are more abundant in stressed rhizosphere metagenomes: M00121-Heme biosynthesis, M00364 C10-C20 and M00096-C5-isoprenoid synthesis, 
M00022-Shikimate pathway, M00165 reductive pentose phosphate pathway (PPP), M00698 Multidrug efflux, M00565 Trehalose biosynthesis, 
M00036 Leucine degradation, phosphotransferase system (PTS). Each block represents a group of KEGG orthologous, for some a gene name is 
suggested. Colours match the taxa in (A), grey boxes were significantly enriched in more than three taxa
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Gammaproteobacteria dominated most functions. 
More sequences were assigned to lipopolysaccharide 
biosynthesis in Stirling and the function was over-
represented in Beta- and Gammaproteobacteria in the 
rhizosphere of Stirling compared to Desirée (Fig.  5B). 
Similarly, biofilm formation and fatty acid biosynthesis 
via the Raetz pathway, together with genes for ABC-
transporters of lipoproteins and lipophospholipids, 

belonged mainly to Xanthomonadales and were con-
cordantly more abundant in Stirling (Fig.  5C, details: 
Additional file  1:  Tables S11 & S12). Other Stirling-
associated Xanthomonadales were, based on their 
metagenome information, likely involved in (i) the con-
version of L-cysteine via glutathione to L-glutamate 
(glutathione metabolism), (ii) the conversion of taurine 
to 5-glutamyltaurine (Additional file  1: Table  S12E) 

Fig. 5 Distinct functions and genes between rhizosphere metagenomes from a good (Stirling, ocher) and poor (Desirée, turquois) performing 
potato genotype cultivated under combined stress. A The number of significant (FDR < 0.05) differently occurring genes per best taxonomic level. 
B Bar sizes show the mean abundance in normalized reads of a function. Filled bars indicate a significant (FDR < 0.01) fold change between potato 
genotypes. Whether a function is most abundant in Actinobacteria (Ac) Beta-/ and Gammaproteobaceria (BGP) or Alphaproteobacteria (AP) is 
indicated in the first column for Desirée and in the second column for Stirling metagenomes. Comparing the abundance of functions within one 
taxonomic group revealed whether a function is significantly (FDR < 0.01) overrepresented in rhizosphere metagenomes from Desirée or Stirling. C 
Functional modules that are distinct between genotypes: M00121-Heme biosynthesis, M00364 C10-C20 and M0546-Purine degradation, M00866 
Raetz pathway, phosphotransferase system (PTS). Each block represents a group of KEGG orthologous, for some a gene name is suggested. Colours 
match the taxa in (A)
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(iii) fructose uptake (phosphotransferase system, PTS, 
Fig. 5C) (iv) the production of auxin by the tryptophan 
2-monooxygenase (iaaM) (Additional file  1: Fig.  S8A) 
and (v) in the type II secretion system (Additional file 1: 
Table S12E). One rhizosphere MAG MeBa083 was clas-
sified as Lysobacter (order Xanthomonadales, Addi-
tional file 1: Table S4) and contained two bacteriocin-, 
two lanthipeptide-, one arylpolyene and one polyketide 
synthase-like region. Carbohydrate metabolism and 
carbon fixation pathways in prokaryotes were over-
represented in Actinobacteria from Stirling compared 
to Actinobacteria from Desirée rhizosphere metagen-
omes (Fig.  5B). In total five glutathione-S-transferases 
from three different taxa were more abundant in Stir-
ling metagenomes (Additional file 1: Fig. S8A).

In rhizosphere metagenomes genes for steroid deg-
radation were more abundant and over-represented 
within Actinobacteria from Desirée compared to Act-
inobacteria from Stirling (Fig.  5B). Additionally, folate 
biosynthesis, biotin and beta-alanine metabolism were 
over-represented in Actinobacteria from Desirée rhizo-
sphere metagenomes. In general, genes with assigned 
function that were more abundant in Desirée belonged 
mainly to Pseudonocardiales (Fig.  5A). Their assigned 
potential functions included purine degradation to urea 
and diverse transporter genes for (i) sugars (raffinose, 
chitobiose, sorbitol, ribose, D-xylose) (ii) oligopeptide 
and (iii) tetrathionate (Additional file  1:  Table  S12J). 
Branched amino acid and C4-dicarboxylate transport 
genes were from Comamonadaceae and Pseudonocardi-
ales, while more abundant amino acid urea transporter 
genes were only detected in Comamonadaceae (Fig. 5C). 
Genes involved in plant growth promotion, such as ACC-
deaminase and a pyrroloquinoline quinone biosynthesis 
gene, were found in Pseudonocardiales (Additional file 1: 
Fig. S7B). Phosphate ABC-transporter genes were more 
abundant in the stressed rhizosphere metagenomes of 
both genotypes: from Pseudonocardiales in Desirée and 
from Xanthomonadales in Stirling. Biotin metabolism 
was over-represented in Actinobacteria from Desireé and 
in Beta- and Gammaproteobacteria from Stirling indicat-
ing that different genotype-indicator taxa can have the 
same function under combined stress.

Plasmids and phages—mobile elements in potato 
rhizosphere metagenomes
Besides functional genes, mobile elements varied 
between stress treatments: (i) Shannon diversity of 
phages increased under combined stress (Fig.  6A) and 
(ii) the relative amount of plasmid sequences was lower 
in samples under combined stress conditions (Fig.  6B). 
Interestingly, in rhizosphere metagenomes the Shannon 

diversity of antibiotic resistance genes on plasmids was 
higher in stress compared to unstressed conditions 
(Fig.  6C), indicating a selective advantage of bacterial 
plasmids harbouring antibiotic resistance genes. Of 7010 
phages detected in rhizosphere metagenomes, three 
were more abundant in non-stress and 49 in stress con-
ditions (Additional file 1: Table S13A). Similarly, of 1535 
plasmids detected in rhizosphere metagenomes, 49 were 
more abundant in non-stress and 104 more abundant in 
stress conditions (Additional file 1:  Table S13B). Notice-
ably, 68 of the 104 taxa in which plasmids were more 
abundant under combined stress belonged to Streptomy-
ces. Most plasmids changed in the same ratio as bacte-
ria (Fig. 6D, diagonal line) but some plasmids were more 
abundant in rhizospheres of one of the treatments (with 
or without combined stress), although the bacterial abun-
dance did not change (Fig. 6D, vertical line).

In addition, we observed differences in mobile ele-
ments between the genotypes under stress: (i) the rela-
tive number of phages (Fig.  6B) and (ii) the diversity of 
plasmids (Fig.  6A) was higher in metagenomes of the 
poorly performing genotype Desirée compared to Stir-
ling. One hundred and six phages and 10 plasmids were 
more abundant in Desirée rhizosphere metagenomes 
(Additional file 1:  Table S14). Three bacterial taxa, Cupr-
iavidus nantongensis, Enterobacter asburiae and Lac-
tobacillus plantarum, had a higher portion of plasmids 
despite minor changes in their whole genomes (Fig. 6E, 
vertical line). In rhizosphere metagenomes of Stirling 
compared to Desirée, 37 phages and 67 plasmids were 
more abundant. This included the plasmids of four Xan-
thomonas species (Additional file  1:  Table  S14). Two 
bacterial taxa, Labrenzia sp. THAF35 and Trichormus 
variabilis had a higher portion of plasmids despite minor 
changes in their whole genomes (Fig.  6E, vertical line). 
But in general, most plasmids were co-enriched with 
their bacterial hosts (Fig. 6DE, diagonal line). For phages 
no exact host ID is available.

Discussion
Due to climate change, reduced use of fertilizers or avail-
ability of nutrients combined stress scenarios become 
increasingly relevant in crop production. Here, we show 
that for potato combined stress, i.e., water and phospho-
rus limitation, has a tremendous impact on the potato 
holobiont at all levels, from microorganisms to phages 
and from microbial composition to functions, all asso-
ciated with severe impacts on plant traits. Overall, the 
responses resemble those typically reported for drought 
stress suggesting that water limitation had a more 
severe impact, however, less information is available on 
the impact of phosphorus limitation (e.g., on microbi-
omes). Microbial composition and functions in the root 
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environment indicate stress-adapted plant–microbe 
interactions. Belowground microbes suffer directly 
from reduced soil moisture as water lacks as a transport 
medium, solvent, and resource. However, we and Gao 
et al. [31] found diversity changes due to water limitation 
(or combined water and P limitation in our study) mainly 

in the rhizosphere but not in bulk soil samples, indicat-
ing an impact of distinct root deposits and exudates on 
microbial communities under stress. In general, under 
drought stress monoderm bacteria like Actinobacteria 
were found to be enriched in most field samples while 
chaotropic, mobile, diderm bacteria, like Proteobacteria, 

Fig. 6 Distinct mobile elements between potato rhizosphere metagenomes. All box plots show the twelve samples of (i) no stress Desiree, (ii) no 
stress Stirling, (iii) stress Desirée and (iv) stress Stirling by A the diversity by Shannon Index B the number of relative reads of plasmids and phages of 
all taxonomic classified reads, and C diversity by Shannon Index considering only antibiotic resistance genes (ARG). In D and E each tile represents 
a bacterial taxon that is plotted by its plasmids log2 Fold Changes (FC) against the bacteria FC. Only taxa with a significant plasmid-FC are shown 
(FDR < 0.05). The plasmid and bacterial abundances change in the same ratio for taxa close to the diagonal line, while taxa close to the vertical line 
have a higher foldchange for plasmids compared to the FC of whole bacteria, indicating important functions on plasmids under distinct D stress 
treatments and E stressed rhizospheres of genotypes
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were found to be reduced [11, 15]. These findings are well 
in line with those of our study. However, we found that 
under water and P limitation Xanthomonadales were 
more abundant in the rhizosphere but not in roots sug-
gesting a compartment-specific adaption to these stress 
condition. Furthermore, Micrococcales (Actinobacteria) 
were depleted under combined stress while still most 
Actinobacteria like Streptomyces and Pseudonocardiales 
were enriched in the rhizosphere.

In roots, the Actinobacteria Propionibacteriales and 
Streptosporangales were additionally enriched, indicat-
ing an adaption to plant metabolism besides e.g., drought 
resistance of the bacteria by sporulation or thick cell 
membranes. In contrast to the bacterial root community, 
combined stress only marginally influenced the fungal 
root community. One exception was the phylum of the 
plant pathogens Olpidium (depleted in rhizosphere and 
roots under combined stress) that propagate as motile 
spores [32]. Also, motile bacteria and their genetic poten-
tial for flagella assembly were depleted under combined 
stress. In the rhizosphere, the fungal taxa Sordariales 
were favoured while Pleosporales were depleted by com-
bined stress like in grassland soils under drought [33].

Metagenome analysis of the rhizosphere revealed that 
half of all detected genes was differentially abundant in 
rhizosphere metagenomes under combined stress and 
non-stress conditions indicating strong stress effects on 
microbial functions. Various sugars serve as osmopro-
tectants, and pathways of ‘fructose-/ mannose metabo-
lism’ and ‘ascorbate- / aldarate metabolism’ were more 
abundant in rhizosphere metagenomes under stress. The 
higher abundance of the pathways ‘base extinction repair’ 
and ‘fatty acid biosynthesis’ under combined stress sug-
gests an adaptation of the microbial community towards 
a higher tolerance of DNA and membrane damaging 
agents such as reactive oxygen species (ROS). ROS are 
detoxicated by antioxidant systems that utilize cofactors, 
like (i) the pentose phosphate pathway with the potential 
to maintain NADPH availability (ii) vitamin B6 (pyri-
doxine) metabolism, (iii) pantothenate and coenzyme A 
biosynthesis and (iv) heme biosynthesis, which were all 
enriched functions under the stress condition applied. 
Furthermore, genes in Beta- and/or Gammaproteo-
bacteria involved in biotin metabolism were enriched. 
Cofactors are involved in root growth [34] and root col-
onization [35], defence [36] and may directly promote 
plant growth by alleviating osmotic and oxidative stresses 
[37, 38]. The enrichment of diverse cofactors in this study 
points to their importance for diverse plant–microbe 
interactions under stress.

We identified more genes involved in the biosyn-
thesis of trehalose under combined water and P limi-
tation, pinpointing to a potential contribution of 

trehalose-producing bacteria to enhanced plant tolerance 
of drought [39]. Furthermore, Actinobacteria carrying 
genes involved in terpenoid backbone biosynthesis were 
over-represented in rhizosphere metagenomes under 
stress conditions, suggesting a role of terpenoids in stress 
mitigation. Besides terpenoid biosynthesis, the potential 
of terpenoid degradation of steroids was higher in micro-
bial metagenomes under combined stress only in the 
poorly performing potato cultivar Desirée.

The pathways of sulfonic amino acid taurine metabo-
lism and the sulphur relay system were mainly repre-
sented by Actinobacteria and more abundant under 
combined stress in the rhizosphere. Even within Actino-
bacteria the taurine metabolism was over-represented 
in the rhizosphere under stress conditions, indicat-
ing the recruitment of Actinobacteria active in sulphur 
metabolism. This links water or P limitation to sulphur 
metabolism, as suggested by Kaya et  al. [40]. Phospho-
rus limitations decrease selenate and selenite adsorption 
of soils [41] and promote selenium uptake in wheat [42]. 
Interestingly, within Beta-/and Gammaproteobacteria 
the selenocompound metabolism was over-represented 
in the rhizosphere of Stirling under stress conditions, 
indicating that recruitment of Beta- and/or Gammapro-
teobacteria active in selenocompound metabolism in 
Stirling rhizospheres might be a reaction to reduced P 
availability.

Functions in rhizobacteria match distinct growth strategies 
of potato genotypes under stress
Canopy cover and tuber bulking of potato plants depend 
on environmental and genetic factors and influence 
potato performance under drought [43]. Although a 
direct impact of root-associated bacteria on root growth 
[44], maturity shifts [45] and above stress reponses [46] 
were shown, we are aware that the plant genotype itself 
with its physiological proporties will substantially impact 
plant stress response. Nevertheless, it is likely that plant 
stress response will be additionally influenced by micro-
bial effects or even a plant physiological response might 
be induced by microorganisms. Here, various bacterial 
phyla and bacterial or fungal ASVs correlated in distinct 
genotypes with high and small yield losses as well as other 
plant traits. Therefore, we assume that microorganisms 
might have contributed to the minimal delay of the can-
opy closure of the variety Desirée under combined stress 
compared to Stirling. Typically involved microbial func-
tions include (i) ACC deaminase enabling the bacteria to 
degrade the plant stress hormone ethylene and (ii) a gene 
known as plant growth promotion factor involved in pyr-
roloquinoline quinone biosynthesis [47], which we found 
in this study in Pseudonocardiales genomes found in the 
variety Desirée. Furthermore, the Pseudonocardiales had 
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genes encoding sugar and branched amino acid ABC 
transporters as well as C4-dicarboxylate two component 
systems, pinpointing to the uptake of photosynthesis-
derived plant exudates [48].

Most microbes in the roots and rhizosphere corre-
lated with only a minimal canopy closure delay but none 
of those also correlated with genotypes having lower 
yield losses under combined stress. Only a Streptomy-
ces ASV_62 was abundant in the rhizospheres and roots 
of potato plants with delayed young tuber development 
under water and nutrient limitation, a trait which corre-
lated with lower yield loss under combined stress. Con-
cordantly in Arabidopsis thaliana bacterial inoculation 
delayed plant development to overcome long-term water 
deficits [40], indicating that beneficial microbes delaying 
plant development at early stages under combined stress 
might be interesting for agricultural application.

In the rhizosphere of the good performer Stirling 
compared to Desirée we detected more abundant genes 
from biofilm pathways and modules like lipopolysac-
charide production including the Raetz pathway, the 
transport of lipoproteins and phospholipids [49]. Xan-
thomonadales are known to produce biofilms in soils 
and rhizosphere, alone but also in consortia [50, 51]. In 
this study candidates for multispecies biofilms are the 
genera Granulicella, Streptomyces and Leifsonia that co-
occurred with Xanthomonadales (Fig. 3, cluster III) and 
were described to produce exopolysaccharides [52] or 
to be present in biofilms [53]. Sponge-like biofilms can 
maintain moisture in the rhizosphere under drought [54], 
may contain antimicrobial substances [49] and facilitate 
transport of some minerals and nutrients, which could 
explain the high abundance of Xanthomonadales in the 
well-performing genotypes in this study. Moreover, Stir-
ling rhizosphere metagenomes hosted genes encoding 
tryptophan 2-monooxygenase (iaaM) from Xanthomo-
nadales potentially involved in plant–microbe interac-
tions [55]. Interestingly, Na et  al. [56] found that under 
drought the slower growing genotype of Panicum mil-
ianceaum L., just like the slower growing Stirling in this 
study, harboured more Lysobacter (Xanthomonadales) at 
flowering, indicating a potential role of some Xanthomo-
nadales in stress-induced growth delay. Under conditions 
without stress, Xanthomonadales were more abundant in 
the faster growing genotype Desirée, whereas this group 
was enriched in a stress-dependent manner in the rhizo-
sphere of Stirling.

The role of mobile genetic elements in rhizobacterial 
adaptions to combined stress
Plasmids and bacteriophages (phages) in bacteria often 
harbour operons or genes for virulence, quorum sens-
ing, antibiotic resistance, and secondary metabolism. 

Mobile elements may be exchanged between bacteria to 
accumulate in populations if needed, thereby enabling 
a fast adaption to environmental conditions. However, 
there are high energy costs to maintain plasmids and the 
lysis of infected bacteria for lytic phage propagation [30]. 
While plasmids and phages within plant microbiomes 
have been rarely described, particularly those involved in 
drought and nutrient stress tolerance, we found signifi-
cant differences in plasmids and phages occurring under 
combined stress and unstressed conditions. Overall, the 
relative abundance of plasmids was reduced under com-
bined water and P limitation, probably because of the 
high maintenance costs of plasmids. However, specific 
plasmids were more abundant under combined stress. 
These plasmids either multiplied in their parent strain 
or spread to other bacteria and included for instance 
plasmids from Variovorax sp. and Cupriavidus sp., both 
known for comprising strains which improve tolerance 
of plants to drought [57, 58]. Strikingly, the plasmids 
of Cupriavidus sp. were over-represented in Desirée, 
indicating a genotype-specific advantage under stress 
encoded on those plasmids. Phages, in contrast to plas-
mids, increased in relative abundance under stress in a 
genotype-specific manner. Phages typically undergo two 
different replication cycles, lytic or lysogenic. In the lytic 
cycle, phages replicate inside host cells, which results in 
lysis of the host cell and release of progeny viruses. In 
the lysogenic cycle, temperate phages integrate in the 
host chromosome (as prophages) and the lysogenized 
bacterium becomes immune to further infections by the 
same virus. Plant microbiota are exposed to stressful 
conditions such as the presence of toxic compounds (e.g., 
ROS) when plants are under stress. Such conditions may 
induce prophages to enter the lytic cycle further induc-
ing microbial and phage community shifts and potential 
induction of horizontal gene transfer. In the rhizosphere 
of the good performer Stirling, the suggested biofilm 
could limit the relative abundance of phages [59]. So far, 
very little information exists on the role of phages in the 
plant environment. However, we know from the human 
gut that phages play a major role in microbiome develop-
ment and adaptation [60] and think that plant-associated 
phages merit further investigation to understand their 
role in microbiome modulation and adaptation.

Conclusion
Our results pinpoint to distinct functions and taxa in 
rhizobacteria that match the distinct phenotypic potato 
stress responses but to which extent they manipulate 
plant growth or whether they react to the plant-cho-
sen growth strategy remains to be elucidated. Besides 
inter-taxon stress adaptions, we identified changes in 
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plasmid and phage diversity and relative abundance 
indicating intra-taxon genome adaptions to combined 
stress in a genotype-specific manner. Mobile elements 
act faster on genomes than genome adaption through 
replication and might play an important role in bacte-
rial stress adaption over the time period of a growing 
season. In this study potatoes were cultivated under 
constant but reduced water supply (combined with P 
limitation), therefore, a slower potato growth increased 
the total amount of water available over the complete 
life cycle. If rhizobacteria and phages shape the pheno-
typic stress pattern of potato plants, engineering root-
associated microorganisms and phages could be used 
to ensure a plant stress response matching the needs 
and watering regime of the farmer.

Methods
Experimental site, set‑up, and sampling
On the 1th of May 2018, at the James Hutton Institute 
in Dundee, Scotland, ten Solanum tuberosum geno-
types (eight tetraploids belonging to group Tubero-
sum; two belonging to the diploid group Phureja) were 
planted in clay soil (edaphic soil factors, April 2018, pH: 
6; Lime req, Arable: 2.5t/ha; Lime req, Grass: 0.0 t/ha; 
Extractable Phosphorus: 12.2  mg/l; Extractable Potas-
sium: 242.0  mg/l; Extractable Magnesium: 174.0  mg/l; 
Extractable Calcium: 1700  mg/l; Extractable Sodium: 
12.80  mg/l; Extractable Sulphur: 1.8  mg/l; Extractable 
Copper: 20.9  mg/l; Extractable Manganese: 3.9  mg/l; 
Extractable Boron: 0.83 mg/l; Extractable Zinc: 11 mg/l; 
Organic Matter, LOI: 7.04%). Per variety a character set 
is available in the European Cultivated Potato Database 
(www. europ otato. org/). The genotypes were grown in 
polytunnels (9.2  m width × 100  m length; c.f. [61] and 
ploidy as well as maturity classes are listed in the Addi-
tional file 1: Table S1. Two treatments were established: 
(i) conventional fertilizer application (Defra RB209, 
ORIGIN 14-14-21, 1050  kg   ha−1, N = ammonium 
nitrate) at planting with supplemental irrigation (two 
to three 30  min. applications per week) and (ii) con-
ventional fertilizer application but without phospho-
rus fertilizer and with reduced irrigation. The watering 
was performed as required and this was based on daily 
soil moisture measurements made at 100, 200, 300 
and 400  mm depth using a Delta T PR2 probe (Delta 
T Devices, Cambridge, UK) at 20 access tube locations 
buried throughout the experimental plots. Irrigation 
was performed at the surface using a drip irrigation 
system. Probe). Soil moisture values are shown in Addi-
tional file 1: Fig. S1C and D. For microbial analysis soil 
and plant samples were taken from the 7th to 10th 
July, i.e., after 52 days after planting, at constant warm 
weather. Each plot consisted of two genotype and two 

border rows (Additional file  1: Fig. S1A, B). Bulk soil 
was sampled at random sites between the plots. Out 
of eight plants per row in a plot, four with a similar 
growth but not the border plants, were selected for 
analysis. Using a potato fork, whole plants with root 
systems were removed and a representative collection 
of 6–10 dirty but shaken root branches (no stolons) 
were collected into 50 ml tubes, stored in a cooling box 
and samples were prepared for DNA extraction at the 
same day. At destructive microbiome sampling, the 
largest diameter of each tuber (all called young tubers) 
was recorded. In an adjacent experiment, the half-time 
to canopy development as well as yield loss (foliage and 
tuber; Additional file 1: Fig. S1E,F) were determined.

Sample preparation and DNA extraction
Soil samples were homogenized and particles larger than 
0.5  cm were removed. Tubes containing the roots and 
25 ml of sterile water were shaken for 3 min. Centrifuga-
tion of the suspension for 10 min at 4000 × g sedimented 
the rhizosphere soil. Root samples were (i) washed under 
running tap water, (ii) surface sterilized by submerging 
them for 5  min in 2.5% NaOCl enriched with one drop 
of Tween 20, (iii) washed three times in sterile water and 
(iv) dried in the oven (85 °C) overnight. Cut roots (length 
0.5  cm) were frozen at − 80  °C and homogenized twice 
for 1.5  min in a TissueLyser at 30  Hz in two different 
orientations. Root powder (40 ± 5  mg), rhizosphere soil 
(200 ± 50 mg) and bulk soil (250 ± 10 mg) were stored at 
− 20  °C in aliquots till DNA extraction, which was per-
formed according to the Qiagen DNeasy Power Soil Kit. 
The 2 ml reaction tubes were shaken for 10 min twice in a 
TissueLyser at 20 Hz.

Amplicon and shotgun metagenomic sequencing and data 
processing
Amplicon library was prepared in a two-step PCR 
approach according to Samad et  al. [62]. The following 
primers bind to targeted DNA in the first PCR: (i) for 
bacteria 799f-illumina 5′-TCG TCG GCA GCG TCA 
GAT GTG TAT AAG AGA CAG  AAC MGG ATT AGA 
TAC CCK G-3′; 1175r-illumina 5′-GTC TCG TGG 
GCT CGG AGA TGT GTA TAA GAG ACA GAC GTC 
RTC CCC DCC TTC CTC -3′ and (ii) for fungi ITS1f-
illumina 5′-TCG TCG GCA GCG TCA GAT GTG TAT 
AAG AGA CAG CTT GGT CAT TTA GAG GAA GTA 
A-3′ and ITS2-illumina 5′-GTC TCG TGG GCT CGG 
AGA TGT GTA TAA GAG ACA G GCT GCG TTC TTC 
ATC GAT GC-3′′. Each sample was processed in (i) four 
biological replicates and (ii) three technical replicates 
to (i) consider biological variance and (ii) reduce ran-
dom PCR effects. Bacterial amplicons of 480  bp from 

http://www.europotato.org/
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root-DNA were extracted from 2% agarose gels. enriched 
via gel extraction. In the second PCR we indexed each 
sample with primers of the Nextera XT Index Kit (Illu-
mina, Inc, USA). A blank DNA-isolation without mate-
rial and a control library (D6305, ZymoBIOMICS, USA) 
were included. The samples were sequenced on an Illu-
mina MiSeq at the Competence Unit Bioresources of the 
AIT Austrian Institute of Technology in Tulln. Illumina 
MiSeq reads were filtered with Bowtie2 v2.3.4.3 [63] to 
avoid the presence of Illumina PhiX contamination and 
quality was preliminarily checked with FastQC v0.11.9 
[64]. Primers were stripped using Cutadapt v1.18 [65]. 
Sequences were quality filtered, trimmed, denoised and 
amplicon sequence variants (ASVs) were generated with 
DADA2 v1.14 [66]. Denoised forward and reverse ASV 
sequences were merged, and chimeras were removed. 
Filtered ASVs were checked using Metaxa2 v2.2.1 [67] 
and ITSx v1.1.2 [68], respectively, for targeting the pres-
ence of V3-V4 16S rRNA and ITS1 region, in bacterial 
sequences and fungal sequences. Taxonomic assignment 
of 16S-rRNA-gene ASVs and ITS-based ASVs was per-
formed using the RDP classifier [69] of DADA2 against 
the SILVA v138 [70] database and UNITE 8.2 [71] data-
base, respectively. BIOM objects (i.e., count matrices 
equipped with taxonomic information) with bacterial 
and fungal counts were built and imported into the R sta-
tistical environment.

For shotgun metagenomics the DNA was cleaned fol-
lowing the Microcon Ultracel YM-30 (Merck, Germany) 
protocol. Using three biological replicates, the Vienna 
Bio Core Facility prepared the DNA library with the 
NGS DNA Library Prep Kit (Westburg, Netherlands) 
and 2 × 150 bp sequencing was conducted on a NovaSeq 
(Illumina, USA). Illumina’s PhiX reads were filtered out of 
the sequencing data with Bowtie2 v2.3.4.3 [56]. Filtered 
reads were processed using fastp v0.20.1 [72] with a cut-
ting-by-quality sliding-window approach from 5´ to tail 
and 3´ to the front of each read. The selected window size 
was 4 bp with a minimum quality of Q20. Adapters were 
auto-detected and removed. A quality check was carried 
out with FastQC v0.11.9 [64]. Fastp and FastQC output 
summaries, respectively, were inspected using MultiQC 
v1.9 [73]. The metagenomic reads were used to generate 
four different datasets. (i) BIOM tables of archaea, bacte-
ria, fungi, phages and plasmids; (ii) metagenome assem-
bled genomes (MAGs); (iii) abundance table of reads 
mapping against the antibiotic resistance gene database; 
and (iv) annotated genes and gene-fragments with their 
abundance.

Ad (i) In more detail, filtered reads were classified with 
Kraken2 v2.0.9 [74] (confidence = 0.1) against archaeal, 
bacterial, and fungal genomes downloaded from the 
NCBI Reference Sequence Database (RefSeq), using the 

kraken-build routine. The fungal sequence database was 
then integrated with all fungal genomes available in Gen-
Bank, downloaded using the “ncbi-genome-download” 
script [75]. The plasmid sequence database was built 
upon data available from NCBI’s RefSeq repository. Bac-
teriophage sequences were downloaded from GenBank 
using the NCBI’s E-utilities [76]. All sequences were 
downloaded, and databases were built between July and 
August 2020. Abundance estimation of Kraken2 results 
was inferred using Bracken v2.6.0 [77] and BIOM tables 
were generated using the kraken-biom v1.0.1 [78] utility.

Ad (ii) Classified archaeal, bacterial, and fungal reads, 
respectively, were then assembled using MEGAHIT 
v1.2.9 [79]. Metagenomic assemblies were performed 
following the recommended settings for low-depth soil 
metagenomic data and only assembled contigs with a 
minimum length of 1000  bp were kept. Contigs were 
later checked by BLAST search against the entire NCBI 
nt database (downloaded in August 2020) and hits were 
processed employing BlobTools v1.1.1 [80]. Gene pre-
diction and annotation of archaeal and bacterial con-
tigs were carried out with MetaProdigal v2.6.3 [81] and 
Prokka v1.14.5 [82]. Gene prediction of fungal contigs 
was performed with GeneMark-ES Suite v4.33 [83]. The 
binning of metagenomic contigs was carried out with 
MetaBat 2 [84] and MaxBin v2.2.7 [85]. For MetaBat 2, 
an iterative strategy was adopted by looping the binning 
with all possible combinations of values for “—maxP” 
(percentage of contigs for binning) and “—minS” (mini-
mum edge score for binning) in a range of min = 60 
and max = 95, with an increment of 5, whereas for the 
“—maxEdges” parameter (maximum number of edges 
per node), the values ranged between min = 200 and 
max = 500, with an increment of 50 at each loop. Each 
resulting binning set was than evaluated with CheckM 
[86] by considering a completeness ≥ 50%, a contami-
nation < 10% and total number of bins. For MaxBin, a 
probability threshold of 0.8 was chosen. For both Meta-
Bat 2 and MaxBin, the minimum required length of 
each MAG was set to 1500 bp. MetaBat 2 and MaxBin 
outputs, respectively, were then combined using DAS 
Tool v1.1.2 [87], with a score threshold of 0.25. Final 
MAGs quality was then assessed using CheckM and 
taxonomy classification was assigned with GTDB-Tk 
v1.3.0 [88].

Ad (iii) The antimicrobial resistance (AMR) reference 
gene data (PRJNA313047) were downloaded on  11th of 
June 2020 and sequences were used to build a BLAST 
database. Magic-BLAST [89] was utilized to map previ-
ously classified Kraken-Bracken reads against the AMR 
database, with a similarity of 99%. Alignment files were 
processed with SAMtools v1.10 [90] and BamTools 
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v2.5.1 [91] and mapping results were used to build a 
table for statistical analysis.

Ad (iv) Magic-BLAST [89] was used to map clas-
sified reads against a database built upon previously 
predicted genes from bacterial metagenomic contigs. 
BAM alignment files were processed, and a table was 
generated for further analysis. Functional annotation of 
predicted proteins was carried out with eggNOG v2.0.3 
[92] against the eggNOG DB v5.0.1 [93] and the output 
was filtered as follows: we excluded (i) non-bacterial tax 
levels (ii) unspecific gene functions (matching to more 
than three different KEGG orthologous) and (iii) KEGG 
functions related to human diseases. The annotation of 
gene clusters for secondary metabolite biosynthesis was 
performed with antiSMASH v5.2.0 [94].

Data analysis
Data analysis was done in R studio using the packages phy-
loseq [95], tidyverse [96] to organize data and vegan [97] 
and RAM for ecological measurements. Bray–Curtis dis-
tance estimated the bacterial community dissimilarities 
between the individual samples. The resulting beta-diver-
sity was visualized through nonmetric multidimensional 
scaling (NMDS), principal coordinate analysis (PCoA) 
or boxplots. A general linear model evaluated the coeffi-
cients of stress-treatment, sample type or genotype for the 
NMDS or PCoA-scores. Analysis of variance (ANOVA) 
tested the relevance of this model for our data. Species 
richness corresponds to the number of distinct ASVs and 
alpha diversity to the Shannon index. Significant differ-
ences in the alpha diversity and microbial species richness 
between sample types were calculated using the Wilcoxon 
test for p value smaller 0.05. For further analyses reproduc-
ible reoccurring core microbiota (detected in at least three 
out of four replicates) were considered. The taxonomic 
networks determined by metacoder R-package [98] used 
the Wilcoxon-test for colouring significant differences 
in taxonomic abundance at each taxonomic rank. Fold 
changes for ASVs were calculated by DESeq2 [99] and dis-
tinct ASVs selected by a false discovery rate (FDR) smaller 
than 0.05. Core ASVs in samples under stress conditions 
that correlated in normalized abundance with phenotypic 
stress responses of tetraploid potatoes were determined 
via spearman correlations and a p value smaller than 0.05. 
Stress response per genotype represents the percentual 
change between yield, foliage mass, half-time canopy clo-
sure, number young tubers and diameter of largest tuber 
under stress and non-stress conditions. Abundance tables 
of the shotgun dataset for taxa, MAGs, antibiotic resist-
ance genes and eggNOG annotated-genes were analysed 
in the same way as ASV-tables but differentially filtered. 
We considered taxa that occurred in two out of three rep-
licates, antibiotic resistance genes with a coverage larger 

than 20% in two out of three replicates, eggNOG gene frag-
ments with a coverage larger than 50% in two out of three 
replicates. To identify distinct abundances at a higher func-
tional level the associated reads were summarized and used 
for Foldchange analysis [99]. To identify over-represented 
functions within one taxonomic group we combined per 
sample sequences assigned either to (i) Actinobacteria, (ii) 
Alphaproteobacteria or (iii) Beta-/and Gammaproteobac-
teria and their lower taxonomic ranks by eggNOG (best 
taxonomic level). Normalized reads were DESeq2’s median 
of ratios. In the KEGG-database each pathway consists of 
several KEGG-orthologues. Distinct abundant pathways 
were considered if we detected at least five differentially 
abundant gene-fragments that represented at least five dis-
tinct KEGG-orthologues. Additionally, KEGG functions at 
Level C were removed if less than 20% of known KEGG-
orthologues were present in our dataset. All significant 
differentially abundant assembled genes were assigned to 
pathways by the web-tool KEGG Mapper-Search & Color 
Pathway [100] to identify submodules. Analyses were visu-
alized in R by ggforce [101], pheatmat [102], formattable 
[103] and ggplot2 [104]. Layout was adapted in Inkscape 
(https:// inksc ape. org).
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