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Abstract 

Background: Wastewater treatment plants are an essential part of maintaining the health and safety of the general 
public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we character‑
ized the resistome, the distribution of classes 1–3 integron‑integrase genes (intI1, intI2, and intI3) as mobile genetic 
element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment 
Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and 
dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. 
Integron‑integrase genes, the 16S rRNA gene, and the coliform beta‑glucuronidase gene were also quantified during 
this time period.

Results: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria 
(39.24% ± 0.25%), Beta‑proteobacteria (23.99% ± 0.16%), Gamma‑proteobacteria (11.06% ± 0.09%), and Alpha‑
proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae 
(23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The 
most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated 
sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax 
(8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibi‑
otic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics 
(14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence 
of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In 
addition, intI1 was the most abundant integron‑integrase gene throughout treatment (1.14 ×  104 gene copies/mL) 
followed by intI3 (4.97 ×  103 gene copies/mL) while intI2 abundance remained low (6.4 ×  101 gene copies/mL).

Conclusions: Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic 
resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of 
integron‑integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be 
actively disseminating resistance between both environmental and pathogenic bacteria.
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Background
Wastewater treatment plants (WWTPs) are essential 
to maintain quality of life by protecting public health 
and aquatic organisms. They serve as a centralized sys-
tem that collects wastewater for large-scale treatment to 
reduce the contamination of downstream aquatic envi-
ronments. Wastewater treatment consists of removing 
nutrients, solids, and microbial biomass, which is critical 
in reducing the impact of releasing wastewater into the 
environment [1, 2]. However, these water infrastructures 
were not designed to efficiently remove all chemical and 
biological pollutants. Specifically, WWTPs have been 
shown to contain diverse communities of environmental 
and pathogenic bacteria as well as antibiotics, pharma-
ceutical products, and heavy metals that remain through-
out the treatment processes [2–4]. Although chemical 
pollutants in wastewater such as antibiotics and their 
metabolites are found in lower and potentially subinhibi-
tory concentrations ranging from 0.1 to 1.4  ppb [5–7], 
their presence is concerning given their potential role as 
a selective pressure for the exchange of resistance genes 
[3, 8].

The large diversity and abundance of bacteria within 
wastewater combined with selective pressures from anti-
biotics and disinfectants creates a hotspot for the devel-
opment and transfer of antibiotic resistance between 
bacteria [9, 10]. Mobile genetic elements (MGE) such 
as plasmids, transposons, and integrons are well char-
acterized genetic elements important for the transfer of 
antibiotic resistance genes (ARGs) by conjugation and 
transformation [8, 10]. Phages, viruses that infect bacte-
ria, have recently gained attention as another source of 
ARGs that can transfer resistance through transduction 
[11, 12]. Phages are the most abundant biological entity 
within any given environment with an estimated abun-
dance of  1031 viruses worldwide [13, 14]. We are only 
beginning to characterize and recognize the importance 
of this diversity, not only as a source of new genes, but 
also as a pool of ARGs accessible by bacteria [11, 12, 
15]. As a major link between society and the environ-
ment, WWTPs receive sewage water from many sources 
including households, hospitals, and industry. This rep-
resents an ideal environment for the transfer of ARGs 
between bacteria and from phages to bacteria. This poses 
concerns about the accumulation of antibiotic resistance 
and the potential to transfer ARGs to clinically relevant 
pathogens that may be present within wastewater [16]. 
As antibiotic resistance accumulates both clinically and 

in the environment, we continue to descend towards a 
post-antibiotic era with antibiotics becoming less effec-
tive and viable as a therapeutic option for treating bacte-
rial infections [16, 17]. To prevent this loss of antibiotic 
effectiveness, it is imperative that we mitigate the spread 
of antibiotic resistance by reducing opportunities for 
horizontal gene transfer [18]. These strategies include 
both clinical and environmental considerations to cur-
tail ARG dissemination. Recent advancements along with 
the reduction in cost of high-throughput culture-inde-
pendent methods such as next-generation sequencing 
have improved our ability to monitor ARG dissemination 
[19–21].

In the present study, we use metagenomic shotgun 
sequencing and real-time PCR to characterize the com-
position of both bacteria and phage diversity as well as 
the resistome of major treatment processes within the 
North End Sewage Treatment Plant (NESTP) located in 
Winnipeg, Manitoba, Canada during the fall and winter 
months. This study serves as a baseline for the contin-
ued monitoring of ARG dissemination over each season, 
which will contribute to our understanding of antibi-
otic resistance and community structures within vari-
ous wastewater treatment processes. This information is 
essential for future large-scale upgrades of the NESTP 
targeting phosphorus and nitrogen removal as well as 
microbiological changes occurring within WWTPs. 
This will enable us to monitor the effects of modifying 
operational parameters on microbial diversity and the 
resistome as well as introduce modifications to the pro-
cess aimed at reducing the release of ARGs and antibiotic 
resistant bacteria into the aquatic environment.

Materials and methods
WWTP processing and sample collection
The NESTP is the largest wastewater facility in the Prov-
ince of Manitoba (49°57′08.1″N 97°06′11.4″W) operat-
ing year-round with seasonal temperatures ranging from 
− 40 to 30 °C with the current study ranging from − 18.6 
to 2.8  °C. This WWTP serves roughly 70% of the popu-
lation in the city of Winnipeg treating an average of 200 
million liters per day. Treatment begins with the removal 
of large solids followed by smaller solids and oils in pri-
mary clarification. Wastewater is then moved to high 
purity oxygen bioreactors for biological treatment where 
it is inoculated with activated sludge returned from sec-
ondary clarification to remove nutrients, biosolids, and 
other organic compounds. This is followed by secondary 
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clarification which removes the remaining small solids 
through sedimentation before the wastewater is sub-
jected to UV disinfection. The total hydraulic retention 
time of wastewater in the NESTP is 12 h. The removed 
biosolid waste is subjected to anaerobic sludge digestion 
for 25  days followed by dewatering for disposal. UV-
treated final effluent water quality parameters are sum-
marized in Table  1. Influent and effluent water quality 
datasets are included in Additional file 2. Raw sewage or 
untreated influent (RS), returned activated sludge (RAS), 
and UV-treated final effluent (EFF) were collected on the 
following dates from the NESTP: October 22nd, 2019 
(T1), November 28th, 2019 (T2), December 18th, 2019 
(T3), and February 6th, 2020 (T4). Dewatered sludge 
(SC) was also collected during the T3 and T4 sampling 
events. One liter of each sample was collected in ster-
ile containers and transported on ice to the laboratory 
where they were stored at 4 °C. Within 24 h of collection, 
aqueous treatment samples were filtered through a ster-
ile cheesecloth to remove large solids and 100 to 200 mL 
of the filtrate was filtered through 0.2-µm 47-mm Supor-
200 membrane filters (Pall Corporation, Ann Harbor, MI) 
to capture bacterial cells for nucleic acid extraction. A fil-
tration control consisting of 200 mL of Milli-Q water was 
also prepared for each sampling event. Filters were col-
lected and stored at − 20 °C for further processing.

Bacterial fraction DNA extraction
For the aqueous treatment samples (RS, RAS, and EFF), 
the 0.2-µm filters were washed with 15 mL of 1 × PBS-
Tween20 solution and homogenized at 2500  rpm for 
15  min. Supernatants were then transferred to a fresh 

tube and centrifuged at 3300×g for 15 min to pellet down 
cells. Pellet was resuspended and transferred to Power-
Bead tubes for nucleic acid extraction using the DNeasy 
PowerLyzer PowerSoil Kit (Qiagen Sciences, Maryland, 
MD) as per the manufacturer’s instructions. For the 
dewatered sludge samples, ~ 5  g of solids was collected 
into 30 mL of 1 × PBS-Tween20 solution, vortexed until 
homogeneous (2500 rpm for 15 min) and centrifuged at 
4 °C and 4500×g for 20 min. The resulting pellet (0.25 g) 
was then transferred to a PowerBead tube and extracted 
using the DNeasy PowerLyzer PowerSoil kit as per the 
manufacturer’s instructions, while the supernatant was 
kept for further filtration and DNA extraction of viral 
particles.

Viral fraction DNA extraction
The 0.2-µm filter flow-through from the aqueous 
treatment samples was collected and stored at 4  °C. 
Dewatered sludge viral DNA extraction followed the 
bacterial DNA extraction protocol scaled up to 30  g 
followed by supernatant filtration through 0.2-µm fil-
ter repeated twice. For both sets of samples, 140  mL 
of filtrate was transferred into Centricon Plus-70 filter 
units (Millipore Corporation, Billerica, MA). Filtrates 
were concentrated to ~ 250 µL according to the manu-
facturer’s instructions with additional modifications 
described here. Each sample was centrifuged at 3000×g 
for 30 min at 20 °C in 70 mL increments. The superna-
tant was discarded after each run. The Centricon Plus-
70 filter units were then inverted, and the concentrated 
viral fraction was transferred to sterile tubes and cen-
trifuged at 800×g for 2  min at 20  °C. The ultrafiltrate 

Table 1 UV‑treated final effluent water quality parameters of the North End Sewage Treatment Plant

TSS, total suspended solids; BOD, biochemical oxygen demand; COD, chemical oxygen demand; TN, total nitrogen; TP, total phosphorus; TOC, total organic carbon

*Cumulative amount of rainfall over three days
† Parameters measured the day before and the day after were averaged and used to estimate parameters of sample date

Sampling time Mean Standard 
deviation

Oct-22-2019 (T1) Nov-28-2019 
(T2)

Dec-18-2019 
(T3)

Feb-6-2020 (T4)‡

pH 7.12 6.81 6.79 6.99 6.93 0.14

Turbidity (NTU) 12.25† 4.2 6.3 9.2 7.99 3.03

TSS (mg/L) 19.5† 6 10 18 13.38 5.58

BOD (mg/L) 19.5† 13 18 26 19.13 4.64

COD (mg/L) 51.5† 66 94 89 75.13 17.25

TN (mg/L) 15.4† 40.7 49.8 50.5 39.1 14.22

TP (mg/L) 1.67† 3.43 1.69 1.69 2.12 0.76

TOC (mg/L) 19.8† 21.2 29.6 34.4 26.25 6.02

Precipitation (mm)* 4.8 0 1 1.6 1.85 1.8

Grab temperature (°C) 13.4 14.1 14.1 12.7 13.6 0.7

E. coli (counts/100 mL) 60 60 90 1080 322.5 437.51
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was pre-treated with 2U of Turbo DNase and 60 µg of 
RNAse A (ThermoFisher Scientific, Waltham, MA, 
USA). Nucleic acid was extracted using the QIAamp 
MinElute Virus Spin kit (Qiagen Sciences, Maryland, 
MD) following the manufacturer’s instructions includ-
ing the Qiagen Protease and omitting the carrier RNA 
step. Nucleic acid was eluted with 50 µL of AVE elution 
buffer.

Mock community
Positive sequencing controls were created for each bac-
terial and viral sequencing batch. Bacterial mock com-
munity consisted of equal amounts of Escherichia coli 
(ATCC 25922), Salmonella enterica (ATCC 13076), 
Pseudomonas aeruginosa (ATCC 10145), Staphylococcus 
aureus (ATCC 25923), Legionella pneumophila (ATCC 
33152), L. longbeachae, clinical isolates of Campylobacter 
lari and C. upsaliensis, and environmental isolates of C. 
jejuni and C. coli with a total concentration of 11.2 ng/µL. 
The viral mock community consisted of equal amounts of 
Adenovirus and Myophages M2 and M3 with a total con-
centration of 0.4 ng/µL. Nucleic acid was extracted from 
the bacterial mock community using the DNeasy Power-
Lyzer PowerSoil Kit (Qiagen Sciences, Maryland, MD) 
according to the manufacturer’s instructions. Viral mock 
community nucleic acid was extracted using the QIAamp 
MinElute Virus Spin kit (Qiagen Sciences, Maryland, 
MD) including the modifications described above (see 
Methods: “Viral fraction DNA extraction” section).

DNA precipitation and sequencing
All extracted bacterial DNA samples were precipitated 
using 0.1 volumes of 3  M sodium acetate (pH 4.6), two 
volumes of 100% ethanol, and 4 µL of 5  mg/mL lin-
ear acrylamide, which was stored at − 80  °C overnight. 
Samples were centrifuged at 16,000×g for 30  min at 
4  °C. Supernatants were discarded and pellets were 
washed with 1 mL of ice-cold 70% ethanol before repeat-
ing centrifugation. Resulting pellets were air-dried and 
resuspended in 50 µL of 10 mM Tris solution. DNA con-
centration was measured using the Qubit 4.0 fluorometer 
and Qubit dsDNA High Sensitivity Assay Kit (Invitro-
gen, Carlsbad, CA). Metagenomic shotgun sequencing 
was performed on the Illumina NextSeq platform (Illu-
mina, Inc., San Diego, CA) at 1 × depth using the Illu-
mina Nextera Flex kit with 300 bp paired-end outputs at 
the Integrated Microbiome Resource (IMR, Halifax, NS). 
Raw sequencing read adaptor sequences were trimmed 
prior to receiving sequencing reads. Raw metagenomic 
sequencing reads are available in the NCBI Sequence 
Read Archive under BioProject ID: 768945.

Quantification of gene copy numbers and statistical 
analysis
Real-time PCR TaqMan assays were carried out for each 
sample (RS, RAS, EFF, and the negative filter control) in 
triplicate. Mobile integron-integrase genes (classes 1–3) 
served as biomarkers for measuring variation in ARG 
dissemination between treatments [8, 22]. Coliform beta-
glucuronidase gene uidA was used as a culture-inde-
pendent method of E. coli and coliform quantification 
[23] in addition to plate counts reported in Table 1. The 
16S rRNA gene was quantified to assess total bacterial 
abundance. Sequence and product size of primers and 
probes are listed in Table 2. Real-time PCR data for the 
dewatered sludge was unavailable for the present study.

Each 10 µL TaqMan real-time PCR mixture con-
sisted of 5 µL of TaqMan Environmental Master Mix 
2.0 (Applied Biosystems, Foster City, CA), 400  nM of 
each primer, 100 nM of each probe, and 2 µL of 10 ng/
µL template DNA. Real-time PCR was performed using 
an ABI QuantStudio 5 Real-Time PCR System (Applied 
Biosystems, Foster City, CA). Thermal cycling conditions 
were the same for all targeted genes: 2 min incubation at 
50 °C, denaturation and activation of Taq polymerase for 
10 min at 95 °C, followed by 40 cycles of 15 s at 95 °C and 
60  s at 60  °C. Primers and probes are listed in Table  2. 
Primers were used in the Primer-BLAST tool [24] to 
extract target regions. Then, these regions were uploaded 
to Geneious Prime R9 [25] to corroborate primer and 
probe sequences of gene fragments. Combined inte-
gron-integrase gene primer sequences and uidA primer 
sequences were used to construct gBlock Gene Frag-
ments (IDT, Coralville, IA). These gBlock constructs were 
used to generate standard curves for the quantification of 
environmental gene copy numbers (GCN).

The 16S rRNA gene standard curve was generated with 
DNA from Salmonella enterica (ATCC 13076). GCN 
of all target genes were calculated and normalized per 
milliliter of sample filtered and per nanogram of DNA 
using equations described by Ritalahti et al. [26] and Lee 
et  al. [27]. GCN were  log10-transformed for generalized 
linear model (GLM) analysis using Statistical Analysis 
System (SAS University Edition for Windows). Tukey–
Kramer tests were run to determine statistical differences 
between GCN using GLM results for treatment condi-
tions and across sampling events (T1 through T4) [28]. 
Differences between conditions were considered statisti-
cally significant at a p-value ≤ 0.05.

Metagenomic data processing and analysis
Taxonomical characterisation. Raw metagenomic 
shotgun sequencing reads were processed in Geneious 
(version 9.0.5) by pairing and merging paired-end 
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reads before filtering sequence lengths below 151 bp to 
remove short and low-quality reads [29]. These reads 
were then used as input for MG-RAST to characterize 
the community composition through sequence similar-
ity searches using default parameters [30]. Metagen-
omic sequences are available from MG-RAST with 
sequence IDs listed in Additional file 1: Table S1. Prin-
cipal coordinate analysis (PCoA) with Bray–Curtis dis-
tance matrix was performed using abundance data at 
the species taxonomic level using the phyloseq R pack-
age [31]. Alpha-diversity indices (Shannon diversity, 
Simpson diversity, and Chao1) and rarefaction curves 
were generated using vegan R package [32]. Data visu-
alization was performed using Tableau [33] and ggplot2 
[34] in RStudio [35]. Alpha-diversity values were 
 log10-transformed for generalized linear model (GLM) 
analysis and Tukey–Kramer test using SAS 9.4M6 to 
determine statistical differences between treatments 
[28].

ARG analysis. The merged and filtered paired-end 
reads were used to generate contigs with the Geneious 
(version 9.0.5) de novo assembler tool at medium-fast 
sensitivity using default settings [25, 29]. The con-
tigs (range 151  bp to 197  kb) were then compared 
against the comprehensive antibiotic resistance data-
base (CARD) using the resistance gene identifier tool 
(RGI) to identify ARGs for the characterization of the 
resistome [36]. The ARGs identified by CARD RGI 
were grouped into classes according to the type of anti-
biotic they confer resistance against and quantified 
by absolute abundance as well as relative abundance 
(number of ARG class divided by total ARG) and nor-
malized abundance (number of ARG class divided by 

the total number of bacterial and viral reads) reported 
in percentage.

Network analysis and visualization. Network analy-
sis was performed to investigate co-occurrences between 
ARGs and bacterial and phage families in the different 
wastewater sample types. Microsoft Excel was used to 
organize data into a suitable format for R [37]. RStudio 
[35], was used to generate Spearman’s correlation matri-
ces and the preliminary edge and node lists needed for 
network visualization. The R packages used are listed in 
Additional file 1: Table S2. The edge and node lists were 
finalized using Microsoft Excel. Gephi [38] was then uti-
lized for network visualization. Gephi’s output files were 
aesthetically enhanced in Inkscape [39].

Results and discussion
Taxonomical composition of the North End Sewage 
Treatment Plant
Bacterial community composition
The major bacterial classes found in almost all sam-
ples above 1% relative abundance were Actinobacteria 
(39.24% ± 0.25%), Betaproteobacteria (23.99% ± 0.16%), 
Gammaproteobacteria (11.06% ± 0.09%), Alphaproteo-
bacteria (9.18 ± 0.04%), and Bacteroidia (2.63% ± 0.02%). 
This is consistent with other reports of WWTP class 
composition [40–42]. PCoA (Fig.  1) and relative abun-
dance comparisons (Fig.  2a) were performed to deter-
mine the relatedness of samples and fractions across 
treatments and sampling events. Bacteria PCoA (Fig. 1a) 
shows clustering of the RS, RAS, and EFF samples 
together by treatment and by month. SC samples were 
more similar to each other but clustered away suggest-
ing compositional differences after anaerobic digestion 

Table 2 Description of primers and probes used for quantitative PCR

Gene Primer name Sequence (5′–3′) Product size (bp) References

intI1 IntI1‑LC1 GCC TTG ATG TTA CCC GAG AG Barraud et al. [22]

IntI1_LC5 GAT CGG TCG AAT GCG TGT 196

IntI1_probe (FAM) ATT CCT GGC CGT GGT TCT GGG TTT T (/ZEN, IABkFQ)

intI2 IntI2_LC2 TGC TTT TCC CAC CCT TAC C Barraud et al. [22]

IntI2_LC3 GAC GGC TAC CCT CTG TTA TCTC 195

IntI2_probe FAM‑TGG ATA CTC GCA ACC AAG TTA TTT TTA CGC TG (/ZEN, IABkFQ)

intI3 IntI3_LC1 GCC ACC ACT TGT TTG AGG A Barraud et al. [22]

IntI3_LC2 GGA TGT CTG TGC CTG CTT G 138

IntI3_probe (FAM) CGC CAC TCA TTC GCC ACC CA (/ZEN, IABkFQ)

uidA 784F GTG TGA TAT CTA CCC GCT TCGC Frahm and Obst [23]

866R AGA ACG GTT TGT GGT TAA TCA GGA 84

EC807 (FAM) TCG GCA TCC GGT CAG TGG CAGT (/ZEN, IABkFQ)

16s rRNA gene Bac1055YF ATG GYT GTC GTC AGCT Ritalahti et al. [26]

Bac1392R ACG GGC GGT GTG TAC ~ 320 bp

Bac1115P (FAM) CAA CGA GCG CAA CCC (/ZEN, IABkFQ)
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and the dewatering process. Indeed, SC had significantly 
higher diversity that was more evenly distributed com-
pared to EFF by Shannon (p = 0.02) and Simpson diver-
sity indices (p = 0.01) (Fig. 3a and b). SC also had higher 
diversity compared to RS and RAS, but this was not sig-
nificant. Additionally, the relative abundance of bacterial 
classes in the SC samples appeared to be more evenly dis-
tributed than the other sample types (Fig. 2a). The Chao1 
diversity index showed similar richness across treatments 
with no significant differences detected (Fig.  3c). Each 
sampling event also displayed differences in cluster-
ing with the samples from T1 and T3 clustering closely 

together while T2 and T4 separated across the x-axis 
(Fig. 1a). A potential explanation for this grouping is the 
fluctuation in the relative abundance of Actinobacteria, 
Beta-proteobacteria, and Gamma-proteobacteria across 
samples for both T2 and T4 (Fig. 2a). This suggests that 
there were shifts in the relative dominance of certain 
classes of bacteria over the course of treatment during 
these two time points. Curiously, the negative controls 
for T1 and T2 sampling events had similar alpha-diver-
sity scores for both Shannon and Simpson diversity, yet 
a lower score for Chao1 was recorded (Fig. 3). Inspection 
of the genus dataset (see Additional file  2) and relative 

Fig. 1 Principal coordinates analysis across treatments using the Bray–Curtis distance matrix at the species level. A Comparison of the bacterial 
samples stratified by domain, principal components 1 and 2 explain 68.36% of the variation. B Comparison of the phage samples stratified by 
domain, principal components 1 and 2 explain 63.77% of the variation. Effluent (EFF), returned activated sludge (RAS), raw sewage/influent (RS), 
dewatered sludge (SC), negative control (NEG), October (T1), November (T2), December (T3), February (T4), notation of “p” indicates phage sample

Fig. 2 Composition of bacteria and phage in the North End Sewage Treatment Plant. A Relative abundance of bacteria at the class level. B Relative 
abundance of phage at the family level. C Relative abundance of bacteria at the genus level. Effluent (EFF), returned activated sludge (RAS), raw 
sewage/influent (RS), negative control (NEG), October (T1), November (T2), December (T3), February (T4)



Page 7 of 20Jankowski et al. Environmental Microbiome            (2022) 17:3  

abundances (Additional file  1: Figure S2a) reveals that 
most of the represented genera in the negative controls 
match previously reported genera found in the kitome 
suggesting contamination related to the DNA extraction 
kit [43]. The presence of kitome contaminants in T3 and 
T4 negative controls could not be evaluated due to insuf-
ficient number of reads for analysis in MG-RAST (Addi-
tional file 1: Table S1).

The bacterial community composition at the genus 
level for RS, RAS, EFF, and SC for each sampling event 
is displayed in Fig.  2c. Average percent relative abun-
dance in RS, RAS, EFF, and SC respectively, consisted 
of, but was not limited to, Mycobacterium (37.4%, 18.3%, 
46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 
1.3%), Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%), Aci-
netobacter (0.9%, 1.2%, 4.6%, and 0.5%), Xanthomonas 
(1.1%, 3.7%, 0.3%, and 2.4%), Bacteroides (1.1%, 1.1%, 
2.7%, and 2.4%), Albidiferax (1.8%, 2.1%, 0.9%, and 0.3%), 
Rhodococcus (2.0%, 1.1%, 2.2%, and 0.9%), Verminephro-
bacter (1.4%, 1.7%, 0.9%, and 0.2%), and Pseudomonas 
(0.9%, 1.4%, 0.8%, and 2.4%). Nitrospira, a common genus 
contributing to nitrite oxidation typically found in high 

abundance (around 2% to 6%) in WTTPs [44–47] had an 
average abundance of 0.06% in the NESTP. Acidovorax, 
Pseudomonas, and Xanthomonas have previously been 
reported as being highly abundant in activated sludge 
as common denitrifying bacteria [48–50]. Interestingly, 
Polaromonas, a psychrophile most abundant on glacier 
surfaces, was found to have a high relative abundance 
throughout wastewater treatment [51, 52]. The presence 
of Polaromonas suggests that it could potentially play a 
role in biochemical cycling in the cold climate found 
during winter in Manitoba [51, 53]. Mycobacterium was 
the most abundant genus throughout treatment apart 
from the SC samples where genera were more evenly 
distributed (Figs.  2c, 3b). This trend was also observed 
through real-time PCR by Amha et  al. where the rela-
tive abundance of non-tuberculoid Mycobacterium spe-
cies in wastewater increased after chlorine treatment 
[54]. These results may be explained by the ability of 
Mycobacterium species to aggregate together in aquatic 
environments. Bohrerova and Linden demonstrated that 
increasing aggregate sizes of M. terrae were able to bet-
ter survive UV inactivation compared to non-aggregated 

Fig. 3 Alpha diversity indices of each treatment at the species level. A Shannon’s diversity index. B Simpson diversity index. C Chao1 index
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samples [55]. The composition of bacteria in RAS was 
different from several reports of activated sludge com-
position sharing only a few genera in common [44–46, 
48, 49, 51]. The bacterial mock community provides sup-
port for the presence of the genera observed as all of the 
spiked-in species were represented at the genus level with 
high relative abundance (Additional file  1: Figure S2b). 
Although there was a high amount of richness observed 
in the mock community (Fig. 3c), this could be explained 
by possible kitome contamination during extraction [43] 
as well as the use of a large number of reads and default 
MG-RAST annotation parameters during annotation 
resulting in inflated richness [56, 57].

The ESKAPE group (consisting of Enterococcus fae-
cium, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Enterobacter spp. [58]) of nosocomial pathogens are a 
major issue causing both clinical and economic burden 
across the world due to their propensity to develop mul-
tidrug resistance against virtually all available antimi-
crobial agents [59]. Although resistance often develops 
through person-person transmission and misuse of anti-
microbials, environments such as wastewater represent 
an additional milieu for the transfer of MGEs between 
environmental and pathogenic bacteria [16, 17]. In fact, 
the ESKAPE group has been detected in effluent [60] and 
dewatered sludge in the current study. All representa-
tives of this group were detected across all sampling sites 
and sampling events (see Additional file 2). This suggests 
that MGEs carrying ARGs may not only be transferred 
to other bacteria, but to these nosocomial pathogens as 
well. Although we cannot detect whether ARGs were 
obtained by this group, their presence in this selective 
environment is concerning given the potential to acquire 
resistance. Furthermore, the release of these pathogens 
in downstream aquatic environments and in dewatered 
sludge, often used as agricultural fertilizer, poses the risk 
of reintroducing these pathogens into anthropogenic set-
tings where they can further endanger public health [41, 
61].

Composition of the NESTP phageome
Taxonomic identification of the DNA phages was com-
pleted with MG-RAST and the composition of the 
phageome is reported at the family taxonomic level in 
Fig.  2b. The most abundant phages within the NESTP 
phageome belong to the tailed dsDNA phages within the 
order Caudovirales. Siphoviridae was the most abundant 
family with a relative abundance of 48.69% ± 0.10% across 
all samples followed by Podoviridae (23.99% ± 0.07%), 
Myoviridae (19.94% ± 0.09%), and unclassified Caudovi-
rales (1.47% ± 0.01%). These phages comprise the major-
ity of DNA phages found in the NESTP (Fig.  2b). This 

is in accordance with metagenomic studies of phages in 
wastewater [62–64] as well as in a freshwater ecosystem 
[65]. Members of the Caudovirales order infect many of 
the genera present in the NESTP including Mycobacte-
rium, Acinetobacter, Pseudomonas, Salmonella, Escheri-
chia, and Staphylococcus [63, 66]. Other viruses identified 
were Phycodnaviridae (1.08% ± 0.01%) and Tectiviridae 
(0.27% ± 0.01%). Neither of these low abundance viruses 
were detected in the negative control suggesting that they 
were likely present within the NESTP (Additional file 1: 
Figure S2c; see Additional file 2). Additionally, the taxo-
nomic assignment of the spiked-in virus families in the 
viral mock community were correctly identified at the 
family and genus level (see Additional file  2; Additional 
file 1: Figure S2d), lending further support for the accu-
rate detection of viral families by MG-RAST. Although at 
the genus level, several other marine bacteria were also 
identified in addition to the Synechococcus DC2 strain 
used to culture Myophage M2 and M3 suggesting possi-
ble bacterial contamination during the isolation of phage 
from seawater [67]. The presence of Phycodnaviridae, a 
large dsDNA virus that infects eukaryotic algal cells [68], 
in the wastewater samples suggests that phytoplankton 
and other algal cells may also be present during waste-
water treatment. Previous metagenomic studies have 
reported Phycodnaviridae as a lesser abundant virus in 
wastewater [64, 69].

Further investigation of the phage metagenomes by 
the alpha-diversity indices in Fig.  3 show that these 
metagenomes were highly diverse and evenly dispersed. 
Linear regression analysis of the changes in diversity 
and evenness across treatments was not significant sug-
gesting that treatment did not affect phage diversity 
(Fig.  3). Each phage metagenome was also compared 
by PCoA (Fig.  1b) revealing clustering of RS, RAS, 
and EFF samples together indicating similarity across 
treatments. The T3 and T4 SC samples did not cluster 
together, deviating across the y- and x-axis respectively. 
When examining the rarefaction curves, phage diver-
sity was not fully captured as most phage metagenomes 
did not reach an asymptotic plateau (Additional file 1: 
Figure S1). This suggests that the effect of treatment 
on lower abundant phage species may not have been 
adequately detected. This is however expected and con-
sistent with the fact that the majority of phages remain 
as unidentified dark matter requiring deeper sequenc-
ing and improved bioinformatic techniques to capture 
this diversity [15, 70]. Furthermore, PCoA including all 
metagenomic sequencing samples demonstrated two 
completely separated clusters for bacteria and phage 
(Additional file  1: Figure S3). Alongside the increased 
percentage of viral reads in the phage samples (4.69–
20.01%) compared to bacterial samples (0.03–0.23%) 



Page 9 of 20Jankowski et al. Environmental Microbiome            (2022) 17:3  

based on MG-RAST annotation (Additional file  1: 
Table S1), these results indicate that the study methods 
were effective in reducing bacterial abundance and dif-
ferentiating the bacterial and phage fractions.

Comparison of GCN across treatments and time
Integron-integrase MGE biomarkers intI1, intI2, and 
intI3 were quantified as a proxy for measuring varia-
tion in ARG dissemination between treatments due to 
their presence on transposons often associated with 
conjugative plasmids containing ARGs [8, 18, 71]. Nor-
malized GCN per milliliter and per nanogram of DNA 

Fig. 4 Gene copy numbers of selected genes per milliliter of sample (A) and per nanogram of DNA (B) for the various wastewater treatment 
processes over a four‑month period. The black lines represent the mean for each treatment over four months. Effluent (EFF), returned activated 
sludge (RAS), raw sewage/influent (RS), negative control (NEG), October (T1), November (T2), December (T3), February (T4). *DNA concentration 
was below the detectable limit therefore gene copy number per nanogram of DNA could not be quantified
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show that intI1 and intI3 were the most prevalent inte-
gron-integrase genes within all treatments over the four-
month period (Fig.  4). However, intI2 remained at low 
abundance throughout the treatment with a mean nor-
malized GCN of 6.40 ×  101 gene copies per milliliter of 
sample and 2.50 ×  101 gene copies per nanogram of DNA 
(Fig. 4). Class I integrons carrying intI1 have previously 
been shown to be the most abundant class of integrons in 
WWTPs and often contain clinically important ARGs [9, 
18, 72]. Concordantly, intI1 was the most abundant inte-
grase detected in all treatments with a mean of 1.14 ×  104 
gene copies per mL and 4.00 ×  103 gene copies per ng 
DNA (Fig.  4). The presence of intI1 is associated with 
specific resistance gene families such as streptomycin 
resistance genes (aadA), sulfonamide resistance genes 
(sul1 and sul2), as well as captured beta-lactam resistance 
genes [18, 72–74]. The findings of low GCN abundance 
of intI2 across the different treatments (Fig. 4) is surpris-
ing given its association with common human gut bac-
teria within the Enterobacteriaceae family [28, 74]. Class 
III integron-integrase intI3 also had a higher abundance 
in the NESTP with a mean of 4.97 ×  103 gene copies per 
mL and 1.99 ×  103 gene copies per ng DNA. The class III 
integron-integrases have previously been associated with 
beta-lactamases blaGES and blaIMP which were found 
in several samples in the current study (see Additional 
file  3), but whether these genes are present within the 
integron is uncertain [9, 18, 74].

Overall, NESTP wastewater treatment across all meas-
ured time points did not significantly change any of the 
MGE biomarkers targeted in this study (p-value > 0.05). 
This suggests that stable ARG dissemination within the 
NESTP may be possible throughout treatment and in 
the downstream aquatic environment as MGEs were 
present in UV-treated EFF. All pairwise comparisons 
between treatments and the negative control for each 
integron-integrase gene were significant (p-value < 0.05). 
Pairwise comparison of intI3 between T1 and T4 across 
treatments was significantly different (p-value of 0.0074) 
indicating a decrease in intI3 GCN towards the colder 
winter months in Manitoba (Fig.  4) although whether 
this constitutes seasonal variation or not requires further 
sampling. No other significant differences were detected 
between months across treatments.

The 16S rRNA GCN Tukey–Kramer test did not reveal 
any significant differences between 16S rRNA GCNs 
across treatments or between treatments across the four 
time points (p-value > 0.05). Only pairwise comparisons 
between treatments and the negative control for each 
month was significant (p-value < 0.0001). These results 
indicate that there was little variation in bacterial abun-
dance across both treatments and monthly time points. 
Bacterial abundance measured in GCN per ng of DNA 

remained consistent through treatment but decreased 
nearly twofold from RAS to EFF in GCN per ml of sam-
ple although this was not significant (Fig.  4). This sug-
gests that UV disinfection was able to reduce bacterial 
abundance although not as effectively as other studies 
that demonstrate 16S rRNA log-fold reductions after 
secondary clarification and UV disinfection [75] as well 
as chlorine disinfection [20]. The cold temperatures dur-
ing the sampling events (ranging from -18.6 °C to 2.8 °C) 
and grab temperatures around 13.6 °C (Table 1) may have 
reduced the efficacy of UV disinfection although also 
reducing potential reactivation of UV irradiated cells [76, 
77]. Other factors that may have contributed to reducing 
the effectiveness of UV disinfection include high BOD, 
COD, TSS, low hydraulic retention time, and precipita-
tion (Table 1) [78]. However, when comparing by bacte-
rial richness and evenness there is an observed increase 
from RS to RAS with the addition of activated sludge 
which decreases after UV treatment, although this is not 
significant (p > 0.05; Fig. 3). There was also a non-signifi-
cant increase in Chao1 richness in EFF (Fig. 3c) possibly 
due to the bias of the Chao1 diversity index towards low 
abundance species [21] which likely occurred after UV 
disinfection. A similar pattern was observed in WWTPs 
from comparably cold climates [79].

No significant differences were detected between 
treatments across the four time points for uidA 
(p-value > 0.05). Although not significant, there was a 
decrease in average GCN from RS to RAS (Additional 
file  1: Figure S4). The RS, often containing representa-
tive microbial communities of the human gut microbiota 
[80], had a relative abundance of uidA to 16S rRNA gene 
of 1.55%, which decreased to 0.88% with the addition 
of activated sludge for biological treatment of the influ-
ent (Additional file  1: Figure S4). This suggests a possi-
ble dilution of E. coli and other coliform bacteria in RAS 
with the addition of a diverse community of bacteria in 
the sludge. The subsequent increase in its relative abun-
dance from RAS (0.88%) to EFF (2.44%) however, cannot 
be attributed to the removal of specific bacteria. Culture-
dependent E. coli and fecal coliform counts show an 
average of only 3.2 colonies present per milliliter of EFF 
(Table 1). The uidA results suggest that current UV disin-
fection practices may be insufficient to reduce E. coli and 
coliforms in EFF. However, culture-dependent counts for 
E. coli are within acceptable limits for the NESTP with 
the exception of T4 (Table  1). This discrepancy may be 
explained by the indiscriminate detection of DNA from 
both viable and nonviable cells by qPCR [81] especially 
since cold temperatures reduce the potential for UV-irra-
diated cell reactivation [77]. The difference in uidA ratios 
could also be due to the retention time between influent 
and effluent as well as UV disinfection efficacy.
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Characterization of the North End Sewage Treatment Plant 
resistome
The presence and identity of ARGs in each treatment and 
fraction was determined using CARD [36]. ARGs identi-
fied with below 50% identity match to the reference were 
filtered out. Additionally, the datasets generated for each 
sample were manually curated to remove inferred resist-
ance through variation of targeted structural genes. These 
variants are structurally resistant to antibiotics includ-
ing elfamycin, rifamycin, ethambutol, fluoroquinolo-
nes, diaminopyrimidine, and other drugs [82]. This also 
included removing resistance-nodulation-division efflux 
pumps because their primary function may not be the 
efflux of antibiotics [83], and this cannot be elucidated 
in the present study methods. The remaining resistance 
genes were grouped into major antibiotic classes: amino-
glycosides, beta-lactams, chloramphenicols, fluoroqui-
nolones, glycopeptide antibiotics, macrolides, nucleoside 
antibiotics, peptide antibiotics, sulfonamides, quaternary 
ammonium compounds (QACs), tetracyclines, multiple 
(resistance against 3 or more different antibiotic classes), 
and other antibiotics (residual efflux resistance genes 
against antibiotics not belonging to the major classes 
reported). The curated CARD datasets are found in Addi-
tional file 3.

Resistome of the bacterial fraction
Antibiotic resistance genes targeting most classes of 
antibiotics were detected across wastewater samples. 
When separated into fractions, the bacterial fractions 
contained a more diverse set of ARGs across treatments 
compared to bacteriophages (Fig.  5). Results over the 
sampling period showed a consistent relative abun-
dance across the different ARG classes in the bacterial 
fraction (Fig.  5a). The most abundant class of antibiotic 
resistance in each process was resistance against tetracy-
clines (17.86% ± 0.03%) followed by peptide antibiotics 
(14.24% ± 0.03%), macrolides (10.63% ± 0.02%), β-lactams 
(8.00% ± 0.03%), as well as the other (16.28% ± 0.02%) 
and multiple (13.63% ± 0.03%) categories (Fig.  5a). Dif-
ferences in the abundance of ARGs across treatment 
processes was observed in Fig. 5b where the abundance 
of ARGs increased from RS to RAS and subsequently 
decreased in the EFF, except for the T3 sampling event. 
This trend may well be explained by the introduction of 
microorganisms within the activated sludge that could 
carry additional ARGs, contributing to the composition 
of the resistome. After UV treatment, the number of 
ARGs decreases with the relative distribution remain-
ing even across ARG classes (Fig. 5a and b). The NESTP 
reduced the overall abundance of ARGs in the EFF in T2, 
T3, and T4 (Fig. 5b).

The high relative abundance of tetracycline, multiple, 
and other ARGs was also observed when transformed to 
normalized abundance although this appears to decrease 
after UV treatment (Fig. 6a). SC shows an enrichment of 
ARGs against tetracycline, macrolides, peptide antibi-
otics, multiple and other efflux mechanisms compared 
to other T3 and T4 treatments (Fig.  6a). Although this 
enrichment is not observed to the same degree from RS 
to EFF, the presence of ARGs in EFF and SC raises con-
cerns about their release and usage for irrigating and 
fertilizing agricultural soils as this represents a poten-
tial source for the reintroduction of antibiotic resistance 
accumulating pathogens into communities and hospitals 
[61].

Bacterial ARGs of concern
Examination of the curated CARD datasets (see Addi-
tional file  3) revealed the presence of many clinically 
relevant ARGs in the RS, RAS, EFF, and SC. Resistance 
against vancomycin, a glycopeptide antibiotic used to 
treat severe gram-positive infections [84], was detected 
throughout wastewater treatment, with the exception 
of T2 EFF. Components of the vancomycin resistance 
operon such as variants of the vanRS two component 
regulatory system were detected alongside the variable 
ligases vanA, vanB, vanC, vanD, vanG, and vanN [85]. 
However, the exact variants present cannot be eluci-
dated at the sequencing depths used. Regardless, the 
presence of these operons in the WWTP is concerning 
due to their potential to be located on MGEs capable 
of transferring to pathogenic gram-positive enterococci 
or other opportunistic pathogens such as methicil-
lin resistant Staphylococcus aureus (MRSA), however, 
transfer of vanA, if present, to MRSA is thought to be 
rare [85, 86]. Several vancomycin ligases were detected 
in the EFF and SC. Macrolide resistance was found 
in all samples and specific mechanisms of macrolide 
resistance of interest found in wastewater treatment 
were efflux pumps and ribosomal methyltransferases. 
Between the EFF and SC samples, MGE-associated 
efflux and ribosomal methyltransferases resistance 
genes were detected including mel, mef, erm(B), and 
erm(G) [87]. These resistance genes have been found 
in several of the ESKAPE group pathogens [87] as well 
as on transposons associated with Streptococcus pneu-
moniae [88]. The spread of macrolide resistance is 
important to mitigate as macrolides are one of the most 
prescribed types of antibiotics in the United States used 
to treat upper respiratory infections [88]. The pres-
ence of other clinically relevant resistance genes such 
as blaCTX-M, blaOXA, and blaIMP, mcr mobile colistin 
resistance gene variants, and mobile tetracycline resist-
ance genes (tet(A), tet(B) and tet(M)) were detected in 
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many of the EFF and SC samples (see Additional file 3). 
Additionally, the tet(X6) mobile tigecycline resist-
ance gene was putatively detected in the T1 EFF, T3 
SC, and T4 SC. Colistin and tigecycline are last resort 
antibiotics that were only recently discovered to have 
mobile resistance genes [89, 90]. The detection of these 

resistance genes in the NESTP is concerning given 
their potential for dissemination to clinically relevant 
pathogens such as those in the ESKAPE group. Over-
all, the presence of these clinically important ARGs 
within wastewater at the NESTP raises concerns about 
the possibility of ARG transfer and increased antibiotic 

Fig. 5 Composition of antibiotic resistance genes in various treatment processes over 4 months. A Relative abundance and B absolute abundance 
of antibiotic resistance genes identified by CARD in the bacterial samples. C Relative abundance and D absolute abundance of antibiotic resistance 
genes identified by CARD in the phage samples. Effluent (EFF), returned activated sludge (RAS), raw sewage/influent (RS), dewatered sludge (SC), 
negative control (NEG), October (T1), November (T2), December (T3), February (T4)
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resistance in the environment as a result of these 
microbial pollutants [16].

Resistome of the phage fraction
The phage metagenomes were also run through CARD 
RGI following the same parameters and filtering crite-
ria as the bacterial fraction. Overall, there was a ten-
fold decrease in the abundance of ARGs in the phage 
samples compared to bacteria. This was higher than 
Wang et  al. who reported an overall 18-fold decrease 
in ARG abundance between fractions [12], although 
this was in a swine feedlot where the ratio of phage to 
bacteria may be lower compared to human or other 
anthropogenic environments [91]. The most com-
mon ARGs found in the phage samples were resistance 
against macrolides (30.12% ± 0.30%), peptide antibiotics 
(10.78% ± 0.13%), tetracyclines (8.69% ± 0.11%), and mul-
tiple (7.40% ± 0.11%) (Fig. 5c). The ARG classes observed 
for phage are concordant with those found in the bacte-
rial resistome although at differing relative abundances. 
Overall, the abundance of phage ARGs appears to 
decrease with each subsequent treatment (Fig. 5d). Dis-
cordance in the SC phage ARGs was observed between 
T3 and T4 with roughly twice the number of ARGs in 
T3 than any other sample while no ARGs were detected 
in T4 (Fig. 5d). This suggests that the T3 SC sample may 
have been contaminated although further monitoring is 
required to confirm this observation. Macrolides were 
the most abundant ARGs in the phageome and were 

consistently observed in RS and RAS before declin-
ing in EFF (Fig.  6b). Peptide antibiotics were sparsely 
distributed across samples with the exception of the 
T4 RS, which contained several ARGs previously only 
observed in the bacterial fraction (Fig.  6b). Only two 
putative β-lactam ARGs were observed in the T3 and 
T4 RS (Fig. 5d). This result was surprising since multiple 
studies have reported β-lactam and tetracycline ARGs 
as the most abundant classes in phage [11, 12, 92]. Nay-
fach et al. report lincosamides (categorized as macrolides 
here) as the most abundant ARGs followed by β-lactams 
and tetracyclines when using CARD RGI [15]. Apart 
from β-lactams, the ARG profile was similar to that pre-
sented here.

Detection of clinically relevant ARGs in phage metagenomes
Phage acquisition of ARGs is generally thought to occur 
through generalized transduction or non-specific pack-
aging of bacterial DNA instead of phage DNA in the 
capsid [61]. Therefore, bacterial originating ARGs are 
more likely than bona fide phage ARGs. Investigation 
of the complement of ARGs detected in phage metage-
nomes revealed a core set of streptogramin resistance 
genes known as virginiamycin O-acetyltransferase (vat) 
enzymes (see Additional file 3). At least one of the follow-
ing vat genes were detected in nearly all phage metage-
nomes: vatB, vatH, vatI, and vatF. Moon et al. [65] also 
reported the presence of vat genes (vatA and vatB) in the 
phageome of a freshwater river. However, these putative 

Fig. 6 Heatmap of antibiotic resistance classes. A Bacterial fraction. B Phage fraction. Effluent (EFF), returned activated sludge (RAS), raw sewage/
influent (RS), dewatered sludge (SC), October (T1), November (T2), December (T3), February (T4)
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phage associated ARGs were not tested for resistance. 
The APH(3′)-ia aminoglycoside resistance gene was iden-
tified in the T4 EFF with a 94–100% sequence identity 
match. APH(3′)-ia is a 3′-phosphotransferase that inhib-
its aminoglycoside antibiotics through the antibiotic tar-
get inactivation mechanism [93]. This high confidence 
match suggests that this ARG may be a true positive 
although whether this originated from phage or contami-
nating bacterial DNA is uncertain and warrants further 
investigation.

Considerations and limitations of phage‑associated ARG 
detection
The viral negative control was composed of the flow-
through of each negative control generated per sample 
processing event. A total of roughly 800  mL (200  mL 
flow-through per event) was collected and concen-
trated for viral-like particles. This control contained a 
few ARGs belonging to classes that were less frequently 
represented in the treatment samples. These consisted 
of ARGs conferring resistance against fluoroquinolones, 
glycopeptide antibiotics, multiple, and other residual 
efflux resistance genes. Only the T3 RAS and SC phage 
resistome overlapped with the negative control contain-
ing the patB and novA genes. patB is an ARG typically 
associated with Streptococcus, which may have been a 
contaminant during DNA extraction as it has been iden-
tified in the kitome [43]. Metagenomic sequencing of the 
phage samples yielded a similar number of reads to the 
bacterial samples (Additional file  1: Table  S1) with the 
percentage of phage reads ranging from 4.69% to 20.01% 
of the total reads based on MG-RAST annotation. This 
percentage of phage reads in the metagenomes was simi-
lar to Moon et al. [65] and higher than that reported by 
Subirats et  al. [11] suggesting that the repeated 0.2  µm 
filtration of the flow-through before concentrating viral 
particles was successful in reducing bacterial contami-
nation. The low percentage of phage reads may be par-
tially explained by the misclassification of prophages as 
originating from bacteria [70]. However, this remains 
a limitation for the analysis of the phage resistome [11]. 
A higher input volume to concentrate more virus-like 
particles may overcome this limitation by increasing the 
number of phage reads as well as the abundance of ARGs 
detected. This could also help reduce the risk of false 
positive ARG calls from potential contaminants. The 
detection of putative phage ARGs in the current study as 
well as previous studies [11, 12, 65] suggest that phages 
may represent an additional reservoir for the propaga-
tion of antibiotic resistance through transduction [94]. 
Future studies should consider increasing metagenomic 
sequencing depth and using longer reads (e.g., Nanop-
ore technology) to better characterize individual phage. 

These studies should also aim to isolate phages contain-
ing ARGs in order to characterize resistance, host range, 
as well as transduction rates to determine their potential 
to spread antibiotic resistance, especially to the ESKAPE 
group pathogens [94, 95].

Co-occurrence of bacteria, phage, and ARGs
We explored co-occurrences between ARGs and bacterial 
and phage families using network analysis and visualiza-
tion. Relative abundances were used instead of absolute 
abundances to eliminate the potential bias that may arise 
from differences in the number of reads between sam-
ples and sequencing runs. Furthermore, only correla-
tions with rho > 0.8 and p-value < 0.01 were included for 
visualization purposes. Figure  7 illustrates the network 
generated using information from EFF samples. Cor-
responding graphs for RS (Additional file  1: Figure S5), 
RAS (Additional file  1: Figure S6), and SC (Additional 
file 1: Figure S7) can be found in Additional files.

Figure  7 comprises 45 nodes and 66 edges. The aver-
age degree is 2.933, the average path length is 1.015, and 
the network diameter is 2. The phage families with the 
highest relative abundances (indicated by the biggest size 
of their nodes) were Siphoviridae and Podoviridae. This 
prevalence is consistent with previous literature [64, 96].

Some of the co-occurrences seen in Fig. 7 may be par-
tially explained by host-phage relationships. For instance, 
Siphoviridae has been reported to infect Mycobacte-
riaceae [97] and Nocardiaceae (Rhodococcus) [98]. Other 
potential explanations for co-occurrences involve diet 
and habitat. For example, Phycodnaviridae is a common 
inhabitant of the human gut [99], which may explain its 
co-occurrence with several bacterial families, such as 
Bacteroidaceae, Enterobacteriaceae, and Pseudomona-
daceae [91, 100]. Meanwhile, co-occurrences of bacterial 
ARGs with bacterial families may be partially due to the 
latter carrying the former. This hypothesis is similar to 
that posited by Li et al. [101], which suggests that certain 
microbial taxa carry specific ARGs. Furthermore, phages 
from shed gut bacteria readily transduce other environ-
mental bacteria, disseminating ARGs in the process [62, 
91, 94, 102, 103].

Of the network analyses, the graph for SC samples 
(Additional file  1: Figure S7) is notable. This network 
exhibits very strong co-occurrence patterns among all 
ARGs and phylogenetic groups, which may be explained 
by the fact that microorganisms and other solids are 
more densely packed in the SC [104]. These results may 
suggest that there is an increased exchange of ARGs in 
the SC compared to other processes [105]. More steps 
should be taken to further treat this SC since it is used to 
fertilize farmlands [106] and thus could spread ARGs and 
pathogens to agricultural products.



Page 15 of 20Jankowski et al. Environmental Microbiome            (2022) 17:3  

In general, the presence of various ARGs and bacterial 
& phage families in EFF samples indicates that they were 
not removed by the wastewater treatment process. Thus, 
discharging EFF into rivers incurs the risk of disseminat-
ing pathogens, antibiotic resistance genes, and possibly 
antibiotic-resistant pathogens. Therefore, future studies 
should monitor the presence of ARGs as well as bacte-
rial and phage taxa downstream of wastewater treatment 
plants. Additionally, more studies on the co-occurrence 
of ARGs and human bacterial pathogens in environmen-
tal reservoirs, as well as subsequent analyses, should be 

conducted to establish and validate newfound potential 
relationships between ARGs and microorganisms of pub-
lic health importance.

Conclusion
The bacterial composition at the class level for each 
wastewater treatment process closely resembled other 
studies with a core set of bacteria: Actinobacteria, 
Betaproteobacteria, and Gammaproteobacteria [40–42]. 
Further analysis at the genus level revealed that Mycobac-
teria, Polaromonas, and Acidovorax were found at higher 

Fig. 7 Network analysis of co‑occurrence patterns among ARGs and microbial taxa in EFF samples. Node sizes correspond to relative abundances. 
Antibiotic resistance gene (ARG), effluent (EFF)
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relative abundances with the latter two genera possibly 
explained by the colder operating temperatures of the 
NESTP during the Fall and Winter months.

DNA phage in the NESTP consisted almost entirely of 
Siphoviridae, Podoviridae, and Myoviridae belonging to 
the Caudovirales order. These phages are known to infect 
several of the most abundant bacteria in the NESTP 
including Mycobacteria, Acinetobacter, and Pseudomonas 
[63, 66]. Another interesting phage detected at 1% rela-
tive abundance was Phycodnaviridae, an algae-infecting 
phage and an inhabitant of the human gut. This phage 
was found to co-occur with several gut bacteria suggest-
ing that its presence in wastewater is due to human waste 
rather than from the surrounding environment.

The NESTP resistome consisted of all classes of ARGs 
studied. The most abundant ARG classes in the bacte-
rial and phage resistomes were resistance against tet-
racyclines, peptide antibiotics, and macrolides. In the 
bacterial fraction, several clinically relevant ARGs were 
detected in the EFF and SC including MGE-associated 
macrolide ARGs and mobile resistance genes (mcr and 
tet(X6)). The phage resistome also contained ARGs 
largely consisting of streptogramin resistance as well as 
the aminoglycoside resistance gene APH(3’)-ia identified 
with high sequence identity match. These results support 
recent reports of phages carrying ARGs and their poten-
tial role in disseminating resistance through transduction 
[11, 12, 15, 61].

Wastewater treatment effectively reduced the abun-
dance of ARGs from the RS to the EFF in both bacterial 
and phage samples although certain clinically relevant 
ARGs remained in both the EFF and SC. This raises con-
cerns about the potential risk of antibiotic resistance dis-
semination into downstream watersheds and agricultural 
lands that may use the anaerobically digested biosolids as 
fertilizer. This dissemination of ARGs downstream of the 
NESTP may serve as a potential route for reintroduction 
into communities and healthcare settings.

Further analysis of integron-integrase MGE biomark-
ers shows that intI1 and intI3 were the most abundant 
biomarkers. intI2 was also detected but with low GCN 
across treatments. Statistical analyses suggest that cur-
rent wastewater treatment is insufficient at removing 
MGEs during the fall and winter months. The presence 
of these MGE biomarkers and clinically relevant ARGs 
in EFF amplifies the potential risk for the dissemination 
of antibiotic resistance in wastewater. This includes the 
transfer of resistance between environmental bacte-
ria as well as pathogenic bacteria such as those in the 
ESKAPE group, which were detected throughout the 
NESTP. This is especially concerning given that the 
measured integron-integrase genes can contain gene 

cassettes conferring multidrug resistance [74]. Further 
analysis of integron-integrase GCN differences across 
more seasons will be required to determine the extent 
of integron-integrase variation within the NESTP.

This is the first study exploring the microbial compo-
sition and resistome of the NESTP, the largest WWTP 
in Manitoba, using shotgun metagenomics. The results 
of this study establish a baseline for future studies 
examining the effect of modifying operational param-
eters on microbial diversity as well as antibiotic resist-
ance in the NESTP as it continues to be upgraded. This 
study also contributes to our understanding of the 
effects of colder climates on the resistome and commu-
nity composition in a full-scale WWTP.
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