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Abstract

Global plastic production has increased exponentially since manufacturing commenced in the 1950’s, including
polymer types infused with diverse additives and fillers. While the negative impacts of plastics are widely reported,
particularly on marine vertebrates, impacts on microbial life remain poorly understood. Plastics impact microbiomes
directly, exerting toxic effects, providing supplemental carbon sources and acting as rafts for microbial colonisation
and dispersal. Indirect consequences include increased environmental shading, altered compositions of host communities
and disruption of host organism or community health, hormone balances and immune responses. The isolation and
application of plastic-degrading microbes are of substantial interest yet little evidence supports the microbial
biodegradation of most high molecular weight synthetic polymers. Over 400 microbial species have been presumptively
identified as capable of plastic degradation, but evidence for the degradation of highly prevalent polymers including
polypropylene, nylon, polystyrene and polyvinyl chloride must be treated with caution; most studies fail to differentiate
losses caused by the leaching or degradation of polymer monomers, additives or fillers. Even where polymer degradation
is demonstrated, such as for polyethylene terephthalate, the ability of microorganisms to degrade more highly crystalline
forms of the polymer used in commercial plastics appears limited. Microbiomes frequently work in conjunction with
abiotic factors such as heat and light to impact the structural integrity of polymers and accessibility to enzymatic attack.
Consequently, there remains much scope for extremophile microbiomes to be explored as a source of plastic-degrading
enzymes and microorganisms. We propose a best-practice workflow for isolating and reporting plastic-degrading taxa
from diverse environmental microbiomes, which should include multiple lines of evidence supporting changes in
polymer structure, mass loss, and detection of presumed degradation products, along with confirmation of microbial
strains and enzymes (and their associated genes) responsible for high molecular weight plastic polymer degradation.
Such approaches are necessary for enzymatic degraders of high molecular weight plastic polymers to be differentiated
from organisms only capable of degrading the more labile carbon within predominantly amorphous plastics, plastic
monomers, additives or fillers.
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Global plastic pollution
The first plastic to be produced in commercial quan-
tities, Bakelite, was invented in the early 1900s. A scar-
city of resources and a need to enhance technologies
following the First World War drove the development of
new and improved synthetic materials, including plastics.
Plastics now constitute a large and diverse group of
materials made from combinations of synthetic and
semi-synthetic polymer materials, frequently incorporat-
ing additives which aid the manufacture and perform-
ance of the final product, such as plasticisers,
antioxidants and flame retardants [1]. Plastics are pre-
dominantly derived from fossil fuels (e.g. oil or natural
gas), although they may also be made from renewable
resources (e.g. ‘bio-based’ plastics derived from corn
starch or sugar beet); plastics such as polyethylene ter-
ephthalate (PET) may be synthesized from either source
and are sometimes referred to as ‘drop-in’ plastics. With
the onset of mass consumerism in the 1960s and a move
away from the use of traditional natural materials to
more versatile plastics, plastics are now an integral part
of our everyday lives. Plastic production has increased
exponentially since the 1950s, with an estimated 8300
million metric tonnes of virgin plastic being produced to
date and an expected annual production rate of 1100 t
by 2050 [2].
Despite the large variety of polymers available, just

eight make up 95% of all primary plastics ever made,
with polypropylene and polyethylene comprising 45% of
global production [2]. The primary use of plastic is for
packaging (36%), followed by use in building and con-
struction (16%) [3]. Currently, the dominant polymer
types are entirely fossil-fuel based and are not bio-
degradable in a timescale relevant for their end-of-life
management. Fossil-fuel based biodegradable polymers
such as polycaprolactone (PCL) and polybutylene adi-
pate terephthalate (PBAT) are not currently used at
large scale. In fact, less than 1% of polymers are bio-
based, and of those 44.5% are ‘drop-in’ polymers which
share the same properties of their fossil fuel-based ver-
sions, i.e., they are considered non-degradable [4]. Of
the almost 360 million tonnes of plastic produced annu-
ally, only a small fraction (~ 1%) is bio-based [4].
At their end-of-life, there are essentially three fates for

plastics: recycling; incineration and discarding. To date,
end-of-life management of plastic products has not kept
pace with rapid increases in production, resulting in
widespread environmental contamination. Globally, it is
estimated that only 10% of plastics are recycled and 14%
incinerated; the remaining 76% goes to landfills or enters
the natural environment [2]. Recent modelling estimates
that under current rates of loss, with no changes to
management practices and in conjunction with the an-
ticipated increase in production, 710 million tonnes of

plastic waste will have cumulatively entered the environ-
ment by 2040 [5]. Whilst large plastic waste normally
comes to mind when discussing leakage to the environ-
ment, the natural wear and tear of items, such as ropes,
clothing and tyres, sheds small fragments during use, fa-
cilitating the passive transport of smaller plastic frag-
ments into the environment. These fragments, when less
than 5 mm are referred to as microplastics, or nanoplas-
tics if less than 1 μm [6]. Microplastic leakage is ex-
pected to increase by 1.3 – 2.5 times by 2040 under a
business-as-usual scenario and equates to approximately
3 million trillion pieces [5]. This widespread ingress of
plastics into the environment means they are distributed
across the globe in many different forms and in all eco-
systems so far investigated; from rivers and streams [7,
8] to deep ocean trenches [9, 10], mountain tops [11],
and from the tropics [12] to the poles [13].

Microbial impacts of global plastic pollution
The recent death of a Cuvier’s beaked whale in the
Philippines with 40 kg of plastic waste in its stomach
[14] and the necropsy of a young sperm whale on a
Scottish beach yielding 100 kg of refuse [15] caught glo-
bal media attention and scientists continue to report im-
pacts of plastic waste on a wide range of species [16–
18]. More than 800 animal species are already shown to
have been affected by plastic pollution, and with an in-
creasing number, from detritivorous sea snails [19] to
apex marine predators [20, 21], being found to have
internalised plastics. Globally, Wilcox, et al. [22] predict
that as many as 90% of all seabirds ingest plastics. Post-
mortem images of plastics spilling from the guts of dis-
sected marine animals are causing us to reconsider un-
sustainable plastic use, yet the impacts of plastic
pollution on most smaller organisms remain less well
studied. Certainly, negative consequences of plastics
have been reported for meiofauna such as Daphnia
magna [23] and Caenorhabditis elegans nematodes [24],
largely attributed to toxicological impacts, or blockage of
the digestive system and related reductions in feeding
rates. In contrast, the impact of plastics on environmen-
tal communities of microorganisms is rather less well
researched.
The term ‘microbiome’ describes the combined genetic

material, or community, of microorganisms inhabiting a
particular environment. While researchers continue to
explore diverse microbiomes, including of soil, marine,
freshwater, atmosphere and subsurface environments,
the term ‘microbiome’ is perhaps predominently used to
describe research into the microbiome of the gastro-
intestinal tract (the so-called ‘gut microbiome’). Since
environmental plastics can concentrate in the digestive
tracts of organisms from diverse trophic levels [25–27]
they have the potential to impact the gut microbiome.
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However, due to their widespread environmental distri-
bution, impacts of plastic pollution further extend to the
microbiomes of diverse, non-host associated environ-
ments (which hereafter we refer to as the ‘environmental
microbiome’). The direct impact of plastics on gut and
environmental microbiomes are multiple (Fig. 1). (i)
Some plastics and/or their associated additives provide
organic carbon sources metabolizable by certain micro-
organisms. However, the microbial degradation of most
plastics is restricted to only a few taxa [28], remains
slow, and in many cases is unproven or disputed. Indeed,
there remains a paucity of evidence for the microbial
degradation of dominant plastic polymers, including
polypropylene, polystyrene, polyethylene, nylon and
polyvinyl chloride [29]. For these reasons, the impacts of
plastics on microbial communities as a source of add-
itional carbon are likely to be minimal, particularly in
natural environments where alternative labile carbon
and energy sources dominate. A notable exception to
this may be following plastic consumption by certain in-
sects where microbial degradation is postulated to be en-
hanced via ‘prior-processing’ by enzymes present within
the gut [30]; this hypothesis however remains unproven.
(ii) To a large degree, pure plastic polymers are

chemically benign, having little toxic impact. However,
industrial plastics contain additives including flame re-
tardants (e.g., polychlorinated biphenyls and polychlori-
nated naphthalenes), plasticisers (e.g., bisphenol A) and
UV stabilisers (e.g., benzotriazoles), some of which are
demonstrated to impact microbial community compos-
ition and functioning. For example, plastic leachates
from high-density polyethylene (HDPE) and polyvi-
nylchloride (PVC) exert toxic effects on Prochlorococcus
spp., impairing cell growth and population density in a
dose-dependent manner [31]. Prochlorococcus is among
the most numerous of photosynthetic organisms on
Earth [32], responsible for perhaps ~ 10% of ocean net
primary production [33]; in this regard, plastic pollution
has demonstrated potential to impact major global mi-
crobial processes. Consumption of plasticisers including
bisphenol A [34] may similarly cause dysbiosis of the gut
microbiome, impacting host health. (iii) Plastics may also
change microbial communities by impacting rates and
extents of dispersal, since they provide a surface for mi-
crobial attachment and thereby can aid the transport of
microbial cells, including pathogens, both around the
globe and into the gut. In comparison to these direct im-
pacts of plastics on microbiomes, far less is understood

Fig. 1 Schematic highlighting the diversity of direct and indirect impacts of plastics for gut and environmental microbiome communities and
possible microbial solutions for the remediation of plastic waste
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about their indirect impacts. Plastics and their additives
can impact the health of host organisms with conse-
quences for the gut microbiota that is intrinsic to the
wellbeing of higher animals [35].
In this review, we highlight recent knowledge on the

direct and indirect impacts of plastics on the health and
functioning of environmental microbiomes, including of
the gut. We further consider how the impacts of plastics
may be mitigated and also manipulated to enhance both
rates and extents of plastic degradation.

Impacts of plastics on the gut microbiome
Plastics cause a variety of undesirable mechanical, chem-
ical and biological impacts on the species that ingest
them. The consumption of plastics, either directly or via
trophic level transfer [25], has multiple direct conse-
quences, reducing appetite, impacting feeding activity
and decreasing body weight [36], fitness [37] and fe-
cundity [38]. In severe cases, the accumulation of large
plastic masses may block the gastrointestinal tract; this
has been recorded as a cause of death in diverse species
including cetaceans [39, 40], turtles [41] and birds [42].
Smaller fractions of plastic may also bioaccumulate in
the body, mostly in the gut, although translocation of
plastics via the haemolymph and haemocytes of filter
feeders is reported [26, 43], including to organs such as
the liver and kidneys [44, 45]; this implies an ability for
microplastics to cross the gut epithelial lining following
ingestion and enter the circulatory system. Avio, et al.
[43] explored the impact of polyethylene and polystyrene
microplastics on the Mediterranean mussel (Mytilus gal-
loprovincialis). Following 7 days of exposure to the plas-
tic, histological analysis revealed aggregates of plastic in
the intestinal lumen, epithelium and tubules. Further,
increased DNA strand breakages provide evidence of
genotoxic impacts, possibly caused by the greater
production of reactive oxygen species (ROS) in response
to microplastics. Nucleotide-binding oligomerization
domain-like, or NOD-like receptor signalling pathways
were enriched in M. galloprovincialis exposed to micro-
plastics; these receptors recognise pathogenic factors
entering the cell via phagocytosis and activate inflamma-
tory responses. These findings support a growing body
of evidence that micro- and nanoplastics cross biological
barriers to promote immune and inflammatory re-
sponses [45, 46]. Where microplastics impact host im-
munity, this can further cause changes in gut microbial
community composition and functioning. Oxidative
states caused by inflammation can encourage the domin-
ance of more resistant bacterial groups and, if associated
with a rise in anaerobic respiratory terminal electron ac-
ceptors, may support the growth of anaerobic taxa such
as members of the Enterobacteriaceae [47]. The gut
microbiome influences not only the host immune

system, but also contributes to digestion and the
provision of essential nutrients [48], the degradation of
harmful substances [49] and pathogen control within the
gut [50]. The consumption and translocation of micro-
plastics among bodily tissues therefore has far reaching
consequences for the homeostasis normally maintained
between a host and its microbiome.
While the physical presence of plastics demonstrably

impacts the microbiome-gut-immune axis, additives
which leach from plastic polymers have further conse-
quences. Plasticisers are the largest group of plastic addi-
tives [51], particularly phthalates which may concentrate
in bodily tissues to induce multiple adverse effects. For
example, diethyl-hexyl phthalate (DEHP) causes anties-
trogenic properties in fish hindering the development of
reproductive organs [52], presumably due to competition
with endogenous oestrogens for the receptor, and dibu-
tyl phthalates delay gonad development and functioning
in mammals [53] and amphibians [54]. The presence of
bisphenol A (BPA) in the environment is predominantly
due to it being a constitutive monomer of polycarbonate
plastics, although it is also commonly added to PVC as a
plasticiser. BPA has feminising impacts in fish, reducing
male sperm quality, delaying and inhibiting ovulation in
females [55] and in cases of high-concentration expos-
ure, can induce intersex states [56]. Impacts on many
other organisms are reported; BPA influences thyroid
functioning and larval development in amphibians [57],
early embryo development in marine bivalves [58] and
reproductive birthweights and altered oestrous cyclicity
in mammals [59, 60]. Plastics also adsorb organic pollut-
ants such as polychlorinated biphenyl (PCB) from their
environment [61, 62]; these contaminants may be trans-
ferred to the biological tissues of organisms such as birds
following plastic ingestion [51]. While concentrations of
plastic-associated contaminants are unlikely to be a
major contributor to environmental concentrations of
contaminants such as PCBs [63], a variety of plastic-
associated compounds must be considered when asses-
sing the impacts of plastic pollution on host-microbiome
interactions [64].
The impacts of plastic additives on the gut micro-

biome remains little explored, although Adamovsky,
et al. [65] assessed the consequences of environmentally
relevant concentrations of the widely used plasticiser
DEHP [66] on zebrafish. DEHP caused dysbiosis of the
gut microbiota [67], and assessment of the gastrointes-
tinal transcriptome revealed the up-regulation of T cells
thought to play key roles in pathogen neutralisation by
maintaining the integrity of the intestinal epithelia, while
downregulating neuropeptide Y, a hormone which can
modify immune activity by regulating T cell function.
Analysis of the gut microbiome implicated several mi-
crobial metabolites that may contribute to immune and
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intercellular communication, including decreased L-
glutamine in males and D-fructose 6-phosphate in fe-
males. Following DEHP exposure, Adamovsky, et al. [65]
thereby identified the impact of microbial bioactive me-
tabolites on host immune system dysregulation. Further
negative impacts are reported. For example, the abun-
dance of Mogibacteriaceae, Sutterella spp. and Clostri-
diales bacteria is increased within female mice exposed
to BPA [68], presumably due to disrupted regulation of
the sex hormones testosterone and oestrogen, implicat-
ing BPA for causing sex-dependent changes in the gut
microbiome. The exposure of animals to plasticisers and
plastic precursors including BPA are confirmed to im-
pact intestinal microbial profiles in multiple studies [69–
71], sometimes favouring microbial markers of dysbiosis
such as a community dominance by Proteobacteria [72].
Nevertheless, understanding of cause and effect in host-
microbiome interactions remains limited.
As we will later describe, microplastics are potential

vectors of pests and pathogens around the globe via
ocean currents, but so too may they vector pathogens
into the gut. Microbial attachment to plastic particles
can enhance both microbial dispersal and survival, as
biofilms offer protection from environmental stress and
enhanced opportunities for the sharing of beneficial
traits via horizontal gene transfer. Pathogens such as
Vibrio parahaemolyticus, which causes septicaemia and
gastroenteritis in humans, have been identified in marine
plastic-associated biofilm communities [73] and inges-
tion of such organisms hitchhiking on plastics might
cause disease. However, even if not pathogenic, ingested
organisms can influence gut community composition if
they are capable of competing for resources within the
gut [74]. Although the rich taxonomic and functional di-
versity of ‘plastisphere’ microbial communities has re-
cently been unveiled [75], the role of plastics for
microbial dispersal and colonisation of the gut remains
poorly studied and understood.

Impacts of plastics on the environmental
microbiome
In terrestrial environments, the mere presence of plastics
exerts physical impacts directly impacting microbial
communities. For example, agricultural plastic mulch
films applied to enhance short-term crop productivity
cover perhaps ~ 20 million hectares of farmland world-
wide [76] and are a significant source of terrestrial plas-
tic contamination [77]. While most research has focused
on the impact of synthetic plastic films, the microbial
consumption of biodegradable plastics is noted to have
profound impacts on soil microbial communities [78].
Once embedded in the soil, plastics impact soil-water in-
teractions by increasing water content [79], a major de-
terminant of soil microbial community composition and

functioning [80, 81]. By altering the availability of water,
the physical impact of plastics on the soil environmental
microbiome may be substantial [82]; the consequence of
other physical impacts, such as increased shading by
plastics which has been hypothesised to reduce aquatic
photosynthesis, remain largely unsupported [83, 84].
The presence of plastic has direct chemical conse-

quences for environmental microbial communities. Read-
ily biodegradable plastics such as polylactic acid (PLA)
contribute available carbon and in some cases significantly
increase microbial biomass and enzyme activity [85]. The
presence of such plastics in soils alter community com-
position, enriching the abundance and activity of certain
taxa (e.g., members of the Ascomycota fungi [86]). The
impact of more recalcitrant plastics remains less well
understood, although even where degradation is slow,
plasticising agents and additives such as phthalate acid es-
ters may nevertheless leach, reaching elevated concentra-
tions within receiving environments [87] and cause
significant shifts in microbial community composition,
abundance and enzyme activity [88, 89]. Although plastic
additives are not always observed to impact environmental
microbiomes at environmentally relevant concentrations
[90], the sheer diversity of plastic additives used [91]
means their impacts are yet to be fully understood. Of
particular interest, Tetu, et al. [31] investigated the conse-
quences of plastic leachate from HDPE bags and PVC
matting on marine Prochlorococcus and confirmed that
exposure to even the lowest dilution (approximately 1.6 g
L− 1 and 0.125 g L− 1, respectively) of HDPE and PVC from
5-day old leachate impaired Prochlorococcus growth. Fur-
ther, the transcription of genes associated with primary
production was highly impacted, indicating that exposure
to leachate from common plastic items has the capacity to
impair the photosynthesis of the most dominant marine
organisms.
Through the ubiquitous interactions between microor-

ganisms and macroscopic plants and animals [92, 93],
plastics and their associated compounds exert multiple
indirect biological impacts on environmental micro-
biomes. For example, plants can be impacted as they
take up plastics such as polystyrene via their roots, alter-
ing root length, weight and oxidative stress responses,
possibly by the disruption of cell wall pores and cell-to-
cell connections used for nutrient transport [94, 95]. Plant
taxonomy and health play an important role in shaping
soil and rhizosphere microbiomes, impacting the quantity
and quality of root exudates [96] and the potential of
plants to recruit specific members of the soil microbiome
and promote the expression of genes, including those re-
quired for chemotaxis and biofilm formation [97]. Where
observed, the impacts of plastics on the composition and
health of plant and animal communities will likely have
significant influences on environmental microbiomes, but
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to date insufficient evidence exists to suggest a strong link.
Impacts on macroorganisms are rarely detected at envir-
onmentally relevant concentrations of microplastic; Judy,
et al. [98] found no evidence of any impact of microplas-
tics on wheat seedling emergence and production, or on
the mortality or behaviour of earthworm and nematode
populations.
While much research has focused on the impacts of

plastics on microbial communities in situ, environmental
plastics also influence rates and extents of microbial dis-
persal among environments. Buoyant plastics such as
polyethylene, polypropylene and polystyrene, are trans-
ported over long distances by winds and oceanic cur-
rents [99] whereas non-buoyant plastics such as PET
and PLA may act as a vector to transport surface-
associated microbes to deeper water [100]. Microbial
groups, including toxic microalgae [101] and potential
human [75] and animal pathogens [102] have been de-
tected associated with marine and freshwater plastics
[73, 103] along with diverse antibiotic-resistant taxa
[104]. Plastics are further postulated to vector pathogens
through wastewater treatment plants [105] and pest spe-
cies via ballast water [106]. Microbial communities colo-
nising environmental plastics likely aid larval settlement
and colonisation by species including bryozoans and
polychaete worms, thereby assisting the movement of in-
vasive marine macroorganisms around the globe [107].
Thus, in addition to supporting or retarding the growth
of certain taxa, environmental plastics likely play signifi-
cant roles in the dispersal of both microbes and higher
organisms across diverse spatial scales and habitat types.
Interestingly, the microbial colonisation of plastics can
also impact particle buoyancy and transport [108, 109].

Assessing diverse plastisphere communities via
amplicon and metagenome DNA sequencing
The development of molecular methods, including high-
throughput DNA sequencing technology, is increasing
our knowledge of the diverse nature of plastic-associated
microbiomes. Although no taxa are known to only, or
even to predominantly colonise plastic surfaces, multiple
studies have demonstrated how the microbiomes of plas-
tic debris differ from those present in the surrounding
environment [110–113], with an overrepresentation in
the plastisphere of bacterial phyla such as the Proteobac-
teria, Bacteriodetes [114] and Cyanobacteria [115] and
fungi such as Chytridiomycota [113]. Nevertheless, with
studies on the community composition of plastisphere
microbiomes still in their infancy, it remains unclear the
extent to which a core plastisphere community exists
and the degree to which this differs from comparable
microbiome communities in the same environment.
The specificity of plastisphere communities has been

investigated in comparison to communities growing on

inert surfaces such as glass and ceramic with varying re-
sults. A study by Oberbeckmann, et al. [116] using 16S
rRNA gene amplicon sequencing for taxonomic analysis
found no significant difference between the pelagic mi-
crobial communities associated with PET plastic bottles
and glass microscope slides (as a control) deployed for
5-6 weeks. Pinto, et al. [117] also found that the overall
community assembly on glass was similar among bio-
films developing on HDPE, LDPE and PP over a period
of up to 2 months, with families such as Flavobacteria-
ceae, Phyllobacteriaceae, Planctomycetaceae and Rhodo-
bacteraceae being highly abundant across all surfaces.
Such findings (also see Dang, et al. [118]) lead us to as-
sume that there may be no specific plastic-associated
communities. However, despite finding no differences in
the total composition of communities growing on glass,
HDPE, LDPE and PP (noting that significant differences
were however observed for communities on PVC), Pinto,
et al. [117] identified a subset of these communities in-
cubated after immersion into seawater for up to 2
months, which was nonetheless responsive to the char-
acteristics of individual plastic polymers or their addi-
tives (also see Ogonowski, et al. [119] and Kelly, et al.
[7]). A higher relative abundance of the bacterial family
Rhodobacteraceae discriminated communities growing
on HDPE and Sphingomonadaceae for communities
growing on LDPE, as compared to glass. Using a longer
period of incubation, Kirstein et al. [120] found that after
15 months in a natural seawater flow-through system,
biofilms from HDPE, LDPE, PP, PS, PET, PLA, styrene-
acrylonitryle (SAN), polyurethane prepolymer (PESTUR)
and PVC were significantly different to communities
formed on glass. While communities on PVC were no-
ticeable for having a high abundance (> 5%) of the bac-
terial genus Flexithrix, differences in the abundances of
other plastic-specific taxa were largely attributed to vari-
ation in the presence and abundance of less dominant
OTUs, suggesting that rarer species form specific associ-
ations with certain plastic types [121]. Also supporting
the notion that less dominant members of the commu-
nity may respond more specifically to the presence of
different plastics, Erni-Cassola, et al. [122] demonstrated
that during two-day incubations, weathered LDPE was
enriched with a distinct community (particularly mem-
bers of Roseobacter-, Oleiphilus- and Aestuariibacter-like
taxa) from untreated PE and glass. However, this distinc-
tion was not detectable after 9 days, suggesting that
substrate-specific microbes present in the plastisphere
are quickly masked as the community matured and puta-
tive plastic-specific taxa were outnumbered. Interestingly,
while significant differences in microbial community com-
position are not consistently reported among communities
developing on different plastics, different plastic colours
have recently been implicated as a significant determinant
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of plastisphere microbial community structure and func-
tional diversity [123].
To date, a majority of studies assessing the formation

and development of plastisphere communities have been
conducted in the laboratory using different types of plas-
tic of various condition (e.g., from ‘virgin’ plastics specif-
ically manufactured for a study [124] to post-consumer
plastics such as discarded bags and PET bottles [116]).
Considering the longevity of plastic debris in the envir-
onment, the relatively short lengths of most lab-based
studies may not be enough to explore the full degrada-
tive potential of the plastisphere microbiome. Environ-
mental plastics hosting mature plastisphere microbiomes
provide an alternative way to investigate the many fac-
tors that can influence plastisphere formation, such as
plastic composition, age and condition. However, char-
acterisation of aged microplastics, which dominate the
marine plastisphere in terms of abundance, is often re-
stricted as the biomass recovered from environmental
microplastics is frequently very low, limiting abilities to
recover sufficient nucleic acids for sequence analysis. As
a consequence, there remain many unanswered ques-
tions regarding the plastisphere of aged environmental
microplastics in particular.
As our knowledge of microorganisms present in the

plastisphere is growing, there are still important ques-
tions that remain unanswered. (i) Which microorgan-
isms act as pioneer species when the plastic is first
introduced into the environment, and do the priority ef-
fects of early colonisation affect the overall composition
and metabolic potential of the microbial community
later on? These questions are of particular importance
since the enrichment of plastic-degrading organisms
may predominantly occur during early stages of colon-
isation, before the labile substrates generated from
weathering are depleted and these plastic-specific mi-
crobes are dominated by more generalist biofilm-
dwelling taxa [122]. (ii) Does there exist a core global
community of plastic-degrading taxa, or do they exhibit
substantial geographic or habitat-specific biogeography?
(iii) If core members of the plastisphere vary in abun-
dance between plastic types and biofilm maturity, can
the presence and abundance of certain microorganisms
indicate the approximate type and age of plastic debris?
Answers to these questions will assist our ability to iden-
tify plastic-specific microorganisms from different re-
gions, biomes, on different plastics and at different
stages of plastic aging and degradation. Additionally,
such knowledge likely increases our ability to use micro-
bial community DNA to inform on the environmental
impact of plastics (for example by adopting the approach
of Hermans, et al. [125]).
As highlighted by Wright, et al. [126], many studies

have characterised the plastisphere through taxonomic

analyses [112, 117, 121, 122], however, there remains a
lack of knowledge surrounding the functional potential
of these communities. Bryant et al. [115] were among
the first to explore the metabolic potential of the plasti-
sphere microbiome using shotgun metagenomics,
hypothesising that the genomes of plastic-associated taxa
would be more distinct and exhibit increased metabolic
activity compared to free-living bacteria in the surround-
ing marine water. Compared to those of the picoplank-
ton community, their study revealed an increased
abundance of genes encoding for chemotaxis and nitro-
gen fixation as well as several putative genes for xeno-
biotic biodegradation in plastic-associated communities.
This included a gene encoding for 2,4-dichlorophenol 6-
monooxygenase, a hydroxylase associated with the deg-
radation of chlorinated aromatic pollutants [127] some-
times produced from polymer and plastic additive
pyrolysis [128]. Similarly, the study revealed an increased
abundance of multiple genes encoding for ring-cleaving
enzymes, such as protocatechuate 3,4-dioxygenase and
particularly homogentisate 1,2-dioxygenase, previously
linked with styrene and polycyclic aromatic hydrocarbon
degradation [129]. Whilst Bryant, et al. [115] were un-
able to confirm if microbes within the plastisphere are
able to degrade the plastic polymer, the increased abun-
dance of genes encoding for the degradation of several
xenobiotics may assist identification of new plastic-
degrading enzymes, and also the taxa expressing and uti-
lising these enzymes. In common with previous studies,
Pinnell & Turner [130] found the community compos-
ition of fossil fuel-derived PET-associated biofilms to be
indistinguishable from those growing on ceramic beads
deployed at the sediment-water interface of a coastal la-
goon; in contrast, microbial communities associated with
bio-based PHA pellets were dominated by sulphate-
reducing organisms. Metagenomic analysis of the
bioplastic-associated communities revealed substantial
phylogenetic diversification of one depolymerase in par-
ticular, polyhydroxybutyrate (PHB) depolymerase, along-
side an almost 20-fold increase in abundance of the
depolymerase genes, suggesting they are widely distrib-
uted within the biofilm. An increased abundance of
genes associated with sulphate reduction and plastic
degradation, such as depolymerases, esterases and
sulphate reductases, were also reported. Thus, while bio-
based plastics continue to be perceived as an environ-
mentally friendly alternative, if sedimentary inputs are
large enough, the authors speculate that microbial re-
sponses could impact benthic biogeochemical cycling
through the stimulation of sulphate reducers.
It is likely that communities work together to access

plastic-derived carbon; the genes encoding for the deg-
radation of alkanes, for example, are distributed among
diverse assemblages of hydrocarbonoclastic organisms
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[131]. A greater understanding of the dynamics of
plastic-associating communities may be achieved by de-
termining co-occurrence patterns and associations
among different organisms and genes. Toxic and poorly
labile carbon substrates have been observed to strongly
favour facilitation among microbial species such that
they can each grow and degrade these substrates better
in order to survive [132]. Where taxa or gene products
are presumed to play a beneficial role in plastic degrad-
ation, correlated increases in their abundance across
multiple samples as indicated by network analysis (e.g.
see Gatica, et al. [133]) might identify other organisms
and molecular pathways that could benefit from the
community response to plastic contaminants.

Mitigation of plastic pollution by the gut
microbiome
Recently, several insect species (particularly the larvae of
darkling beetles, wax moths and meal moths) have gar-
nered interest for their ability to consume and degrade a
diversity of plastic polymers. For example, larvae of the
Indian meal moth Plodia interpunctella can ingest and
appear capable of degrading polystyrene [134] as do lar-
vae of yellow and giant mealworms Tenebrio molitor and

Zophrobas morio, respectively [135, 136]. Larvae of the
greater [137] and lesser wax moths (Galleria mellonella
and Achroia grisella [138]) are similarly reported to de-
grade polyethylene and polystyrene, respectively. Isotope
analysis provides evidence that carbon from plastics such
as PE is incorporated into the biomass of invertebrates
[139]. Despite the findings of these and other studies, it
nevertheless remains uncertain the extent to which ei-
ther the higher organism or its associated microbiome
contribute toward plastic polymer degradation. Further,
the extent to which these biodegradative processes may
be accelerated by synergistic effects of the host-
microbiome remains unclear (Fig. 2).
Many organisms consume plastic incidentally and gain

no nutritional value from its consumption; plastic has
been found in abundance within the guts of diverse or-
ganisms from seabirds [22] and fish [140] to marine and
freshwater worms [36, 141] and zooplankton [142]. Al-
though the ingestion of plastics by species including the
common earthworm Lumbricus terrestris is associated
with reductions in plastic size distribution [143], in
many cases, demonstration of plastic degradation, e.g. by
conversion to CO2 or incorporation of plastic-associated
carbon into animal biomass, is unsubstantiated [144].

Fig. 2 Evidence for a role for insects, host-associated microbes, or host-independent, free-living microbes in plastic degradation. Degradation of
the plastic polymer may be detected by a variety of methods, including: [i] mass loss of plastic such as clear zone development around colonies
on plastic-infused/overlaid agar, [ii] altered plastic surface properties (e.g., visible by scanning electron microscopy) and [iii] generation of
degradation products (e.g., CO2, polymer metabolites detected by Fourier-transform infrared spectroscopy or high-performance
liquid chromatography)
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Similarly, the ‘consumption’ of plastics by mealworms
and wax moth larvae has gained much attention [30,
145], but confirmation of plastic degradation by the
hosts’ gut-derived enzymes, independent of the hosts’
microbiome, requires further confirmation [146]. In
most cases, it remains to be seen whether the host de-
rives any nutritional benefits from plastic as a source of
energy; without stronger evidence of more complete
degradation in the gut, plastic fragments may merely be
generated via mechanical processes (e.g. chewing) and
ejected into the environment. To confirm plastic degrad-
ation by macroinvertebrates, studies in germ-free organ-
isms (i.e., those lacking a microbiome) are desirable,
noting the physiological homeostasis of organisms such
as T. molitor are impacted by related changes in digest-
ive enzyme expression by axenic cultures [147]. Another
approach is to track the fate of radiolabelled (e.g. 13C,
14C) plastic polymer via incorporation into the cellular
biomass or respiration products of consumer inverte-
brates [139], preferably in the absence of host microbial
taxa to also eliminate the possibility of trophic carbon
transfer. The lack of evidence to date for plastic degrad-
ation by germ-free larvae instead supports that micro-
biota are important drivers of plastic degradation within
the invertebrate gut.
Since diverse putative plastic-degrading microbial taxa

have now been described, including isolates from gut
microbiota [28], it is hypothesised that the enzymes of
gut-associated microbial taxa, rather than the enzymes
of the host per se, perform most, if not all, plastic deg-
radation by plastic-consuming invertebrate taxa. In a
series of experiments, Cassone, et al. [148] provide mul-
tiple lines of evidence for the degradation of LDPE by
the intact microbiome of G. mellonella larvae. The larvae
of G. mellonella readily consume beeswax, which in
some aspects is similar to plastics such as PE, being
comprised of a diverse mixture of long-chain hydrocar-
bons. Hence, plastic consumption propensity may be re-
lated to the structural or chemical similarity of plastics
to their preferred food source. PE-fed caterpillars had a
far greater abundance of gut-associated microorganisms
as compared to starved individuals, or even to organisms
fed a natural diet of honeycomb, suggesting their micro-
biota could benefit from the abundance of PE in the gut.
Antibiotic-treated caterpillars fed PE also excreted only
half the concentration of ethylene glycol compared to
untreated animals. Since ethylene glycol is a putative by-
product of PE metabolism [30] this was used to imply a
direct role of the gut microbiome for PE degradation.
The inhibition of plastic depolymerisation following
antibiotic treatment has now been observed in numer-
ous studies, indicating that the host organism alone is
poorly able to utilise plastic as a carbon or energy
source, or is at least in part reliant on its microbiome as

a source of plastic-degrading enzymes [135, 136, 144,
148]. Providing further evidence for a microbial role in
plastic degradation, Cassone, et al. [148] isolated and
grew bacteria from the gut (identified as Acinetobacter
sp.) on carbon-free media, supplemented with PE frag-
ments. A further observation was that the Acinetobacter
sp. was only capable of degrading plastics at a very slow
rate when isolated from the gut, providing evidence that
plastic degradation is maximised by synergisms occur-
ring between the host and its gut microbiome commu-
nity, although the importance of community microbial
interactions cannot be disregarded. Nevertheless, the ex-
tent to which the larvae impact the structure of the plas-
tic polymer or associated additives, or enhances
beneficial functional attributes of its gut microbiota cur-
rently remains unclear.
Prior to the study of Cassone, et al. [148], multiple au-

thors had already isolated putative plastic-degrading bac-
teria from the insect gut microbiome. Yang, et al. [144]
isolated the bacterium Exiguobacterium sp. Strain YT2
from the gut of styrofoam-fed mealworms and demon-
strated its ability to grow on polystyrene film as a sole
carbon source, associated with changes in the surface
topography and hydrophobicity of the plastic. Mass loss
of polystyrene combined with decreases in molecular
weight and the release of water-soluble degradation
products were used as further evidence to highlight the
capacity for gut-associated microbes to degrade plastics
(noting that Danso, et al. [29] question if sufficient evi-
dence is available to confirm degradation of the high-
molecular weight polymer, i.e. the polystyrene itself, ra-
ther than styrene monomers incorporated within the
polymer matrix). Similar studies implicate Aspergillus
flavus, Bacillus sp. YP1 and Enterobacter asburiae YT1
isolated from insect gut microbiomes as being capable of
PE degradation [134, 149]. While such findings identify
a possible role for gut-associated microbes to degrade
plastic, organisms isolated from non-host environments
are similarly capable of plastic degradation and could be
exploited for their biodegradation capacity.

Mitigation of plastic pollution by the
environmental microbiome
The first evidence that free-living environmental taxa
contribute to plastic degradation was only published
circa 30 years after the first commercial plastic produc-
tion, in 1974, when Fields, et al. [150] showed that the
fungus Aureobasidium pullulans was capable of PCL
degradation. Since then, the number of microorganisms
suggested as capable of plastic biodegradation has in-
creased considerably. A recent study by Gambarini, et al.
[28] reports over 400 publications describing the degrad-
ation of 72 different plastic types by 436 species of fungi
and bacteria. Presumptive plastic-degrading microbes
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identified to date belong to five bacterial and three fun-
gal phyla. Among the bacterial phyla, Proteobacteria
(n = 133), Actinobacteria (n = 88), and Firmicutes (n =
60) have the greatest number of reported species, while
Bacteroidetes (n = 3) and Cyanobacteria (n = 2) have far
fewer. The fungal phyla include Ascomycota (n = 118),
Basidiomycota (n = 19), and Mucoromycota (n = 13)
(Fig. 3).
As outlined earlier, a small number of plastic-

degrading microbes have been isolated from plant- and
animal-associated microbiomes [149, 151, 152]. How-
ever, most isolates reported in the literature were de-
rived from soil [153, 154] or from waste processing sites
such as composting facilities [155] and landfills [156].
An additional source comprises bacteria and fungi
already deposited in culture collections [157]. All major
synthetic polymers have species reported to degrade
them, for instance PE [158, 159], PET [160, 161], PP
[162], PS [163], PU [164] and PVC [165]. However, the
strength of evidence for degradation varies by plastic
type. To date, PET biodegradation has been studied the
most comprehensively. A notable example includes the
PET-degrading bacterium, Ideonella sakaiensis, isolated
from sediment in the vicinity of a Japanese bottle recyc-
ling plant [161]. I. sakaiensis is the first organism for
which the degradation of PET was well-described and
the enzymatic degradation of PET elucidated, charac-
terised [166] and enhanced [167]. Conversely, there is
only weak evidence for the biodegradation of synthetic
polymers such as nylon, PP, PS and PVC. For instance,
nylon-oligomer biodegradation by the bacterium Agro-
myces sp. KY5R has been shown by Yasuhira, et al. [168]
and the genes and corresponding enzymes responsible
for the biodegradation activity have been identified;

however, biodegradation of the plastic polymer (i.e. not
just monomers and oligomers) is yet to be confirmed.

Bioprospecting for novel mechanisms of plastic
degradation
Currently, there is a lack of information necessary to
critically validate many reports of plastic degradation by
microbial taxa or communities or to accurately repro-
duce the research. For instance, many reports provide
no information regarding polymer composition and omit
details of fillers and additives that may be present in
polymer composites. Therefore, it is frequently not pos-
sible to differentiate between the microbial degradation
of plastic polymers or their additives. The strength of
the degradation evidence is also greatly dependent on
the techniques applied, which can be divided into three
main categories, those detecting: (i) changes in the poly-
mer structure, (ii) physical loss of plastic mass and (iii)
the generation of plastic metabolites. The strongest evi-
dence of plastic biodegradation is likely achieved using a
combination of techniques from all three categories.
However, analysis of the dataset of Gambarini, et al.
[28], which compiled data from 408 studies, revealed
that of the microorganisms reported to degrade plastics,
48% of reports were based on assays relating to only one
of these categories, 39% used techniques that covered
two categories, and just 10% used techniques that cov-
ered all three (Fig. 4).
Most reports of plastic degradation by microbial isolates

do not go on to explore the genes and enzymes respon-
sible for the reported activity. In fact, only around 14% of
the microorganisms reported to degrade plastic have the
gene sequences conferring the degradation activity eluci-
dated [28]. This represents a major shortcoming since

Fig. 3 Number of putative plastic-degrading organisms reported by Gambarini, et al. [28], classified at the level of phylum level. The number
following the phylum name represents the number of species from that specific phylum that are reported as plastic-degraders
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knowledge of the relevant biochemical and molecular data
provides the capability to advance the plastic biodegrad-
ation field enormously, allowing the search for new puta-
tive plastic-degrading genes in novel microbiomes by
comparison to enzyme data banked in structural and mo-
lecular databases. Crucial information and procedures re-
lated to the reported plastic degraders are frequently
missing or incomplete in the current literature, for ex-
ample, the location and conditions of isolation of the
plastic-degrading isolate, strength of evidence for degrad-
ation, accurate taxonomic classification, and a lack of de-
posited strains in culture banks. By not addressing these
points adequately, reports of plastic degradation, possibly
in a majority of studies undertaken to date, must be
treated with caution.
To exploit the broad phenotypic diversity that may

already be present in natural populations, future ad-
vances in plastic biodegradation will likely benefit from
isolation of novel microorganisms from diverse micro-
biome communities. This calls for consideration of the
sampling environment and likely growth requirements
of organisms within the microbiome, the plastic type of
interest and the empirical tests required to delineate
growth-linked biodegradation of the polymer. By review-
ing the current literature, we provide a ‘best practice’
workflow of methods necessary to describe the pathways
of growth-linked plastic biodegradation, beginning with
appropriately characterising the plastisphere microbiome

and concluding with the identification of plastic biodeg-
radation genes and pathways (Table 1).
Based on protein mutagenic and structural analysis

studies [166], alongside homology database searches
[28], it is likely that certain microorganisms already pos-
sess plastic degradation genes but do not express them
in situ, and/or derive energy from more readily utilisable
carbon sources when available. By incorporating inert
controls (e.g., glass or ceramic surfaces), we may be able
to distinguish between genes acquired and expressed for
the process of plastic-degradation, from those normally
expressed in biofilm communities (i.e. including where
plastic is not present). Yoshida et al., [161] demonstrated
that I. sakaiensis possesses two genes encoding enzymes
which degrade PET (IsPETase and IsMHETase). How-
ever, they did not address if the IsPETase might be used
by the organism for other functions, or whether it was
being used in situ to degrade PET within the PET recyc-
ling plant from which the organism was originally iso-
lated. Structural analyses of the IsPETase revealed that
the enzyme has a wider active-site cleft compared to an-
cestral cutinase homologs [166]. Narrowing the active-
site cleft via mutation of active-site amino acids im-
proved crystalline PET degradation, indicating that the
IsPETase was not fully optimised for PET metabolism.
This, in conjunction with the initial isolations focusing
on amorphous PET (1.9% crystalline) instead of the
more crystalline PET abundant in bottle recycling plants

Fig. 4 Percentage of studies using evidence for plastic degradation by microbial species based on: (i) changes in polymer structure (blue), (ii)
physical loss of plastic mass (red), or (iii) detection of plastic metabolites (green), or these techniques in combination. Data were compiled
using the
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(15.7% crystalline; Yoshida et al. [161]) suggests that the
origin of the first I. sakaiensis isolate from a recycling
plant might be coincidental.
Mere changes in polymer mechanical properties and

physical structure, even when observed in concert with
microbial biomass production, are insufficient evidence
to confirm polymer biomineralisation by microbial iso-
lates [172]. Physical losses of plastic mass should also be
reported. Plastics can be incorporated into growth media
as plastic films, powders or granules, and emulsifica-
tions. The first two approaches are primarily used to
identify physical changes in polymer structure and the
accumulation of biomass as first lines of evidence for
plastic degradation (Table 1; Fig. 4). Evidence of polymer
degradation from plastic films or polymer granules pre-
dominantly requires changes in polymer roughness, the
formation of holes or cracks, fragmentation or color
changes, confirmed using visual methods such as scan-
ning electron microscopy (SEM), Fourier-transform in-
frared spectroscopy (FTIR) [173] or atomic force
microscopy [174]. However, visual changes in surface
structure, changes in plastic mass and mechanical prop-
erties do not provide direct evidence of biodegradation
[175] because these physical changes cannot be distin-
guished from abiotic degradation. Where biodegradation
is demonstrated it is likely that microbiomes work in
conjunction with abiotic factors to impact the structural
integrity of polymers [176]. Most polymers are too large
to transverse the cell membranes and must be initially
depolymerised (e.g. by heat, visible and non-visible
spectrum light and oxygen) [177]. Additionally, measur-
ing changes in the surface structure or molecular weight
of plastics does not discriminate between the degrad-
ation of polymers or their additives [172]. Therefore, in
addition to plastic film and granule-infused media, we
recommended that biomass accumulation on plastic sur-
faces and changes to polymer structure should be ac-
companied by the detection of plastic metabolites to
describe growth-linked biodegradation.
A common method for assessing microbial plastic me-

tabolism is by observing clear zones in agar containing
emulsified plastic [175, 178]. However, emulsifications
are usually limited to amorphous or lower molecular
weight plastics while environmental waste plastics such
as nylon, PE and PET typically have a higher molecular
weight, limiting the analysis of these pollutant plastics.
In addition, solvents and surfactants widely used to form
plastic emulsions are themselves documented to be de-
graded by microorganisms [179, 180]. Therefore, obser-
vation of clearance zones in culture media containing
plastic emulsions should ideally be associated with other
empirical tests, such as observations of incorporation of
radiolabeled carbon from the polymer backbone into mi-
crobial biomass. Because plastic typically comprises the

predominant or only carbon source in plastic metabolism
assays, only small amounts of evolved CO2 are typically
required to be detected to indicate polymer metabolism
[175]. In addition to CO2, other plastic metabolites
hypothesised to be produced during plastic degradation
(e.g. the production of mono-(2-hydroxyethyl) terephthal-
ate during PET hydrolysis) may be identified using
methods such as liquid/light Chromatography-Mass Spec-
trometry, which detects multiple compounds in a single
analytical run [181]. This approach was employed to im-
plicate the role of a putative depolymerase in PHB degrad-
ation by Aspergillus fumigatus [182]. Similarly, HPLC-
mediated detection of the PET-degradation metabolites
MHET and terephthalate provided evidence for IsPETase
involvement in PET degradation [183]. These methods,
combined with approaches employed to detect changes in
polymer structure and metabolism (Fig. 4) provide power-
ful evidence for confirming plastic biodegradation.
Knowledge of genes known to be associated with plas-

tic degradation provides a strong tool to identify new de-
graders and genes among microbiome communities. For
instance, Danso, et al. [29] developed a hidden Markov
model (HMM) to search genome and metagenome data-
bases for the presence of potential PET hydrolases. The
authors used the sequences from nine different enzymes
with verified activity on PET-based substrates and iden-
tified 504 possible PET hydrolase candidate genes. Stud-
ies such as this, and the work of Gambarini, et al. [28],
indicates a huge potential for mining molecular data-
bases for plastic degradation-conferring genes (PDGs).
One useful approach to verify PDGs experimentally is by
heterologous expression of the microbiome-derived can-
didate genes in a host that lacks degradation capacity in
the absence of the introduced gene, followed by con-
firmation of the plastic-degrading phenotype of the
transformant. Heterologous expression in hosts such as
Escherichia coli has been used to verify plastic
degradation-conferring phenotypes of PDGs encoding
putative PHB-depolymerases, esterases, cutinases, car-
boxylesterase and PET hydrolases from a wide variety of
bacteria, and some fungi [29, 184–186]. Overexpression
in heterologous hosts is also a valuable tool for purifying
high levels of enzyme for in vitro assays or studying en-
zyme crystal structure. Another approach is to disrupt
or silence the candidate PDGs in the endogenous back-
ground and assess the effect this has on the plastic deg-
radation phenotype. Mining metagenomes using the
candidate gene approach does not inform on the discov-
ery of completely novel determinants, or accessory fac-
tors that have not been previously described. Under this
scenario, genotype-phenotype-based studies of individual
degrading strains are still important to identify novel de-
terminants, using methods such as DNA library screens
in heterologous hosts, random mutagenesis or
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differential transcript expression. However, once PDGs
are identified, interrogating metagenomes of closely re-
lated species for conserved alleles can inform on import-
ant residues and functional domains to exploit for
genetic enhancement of plastic degradation traits.

Manipulating microbiomes to enhance rates and
extents of plastic degradation
Different strategies may be employed to overcome the
challenges of isolating microorganisms capable of effi-
cient and/or fast plastic degradation. For example,
higher temperatures can increase the flexibility of both
amorphous [187, 188] and crystalline domains of the
polymer chain [189–191], thereby improving their acces-
sibility to enzymatic attack [188]. In this regard,
thermophile microbiomes represent a promising source
of enzymes because they will likely be more thermo-
stable. In one study, the most thermostable enzyme
tested (a leaf-branch compost cutinase (LCC) obtained
from an uncultured bacterium [186]) had the highest
PET depolymerization rates at 65 °C [192]. Degradation
rates were further increased after improving enzyme
thermostability through site-specific mutagenesis. To
date however, only ~ 10% of isolated plastic degradation
studies report polymer degradation at temperatures
≥50 °C and only a small fraction (~ 0.5%) of these have
been isolated from extreme environments such as hot
springs, composts and anaerobic digesters [28]. There
would appear to be significant scope for mining
thermophile and extremophile microbiomes as a promis-
ing source of putative plastic degrading enzymes and
microorganisms.
The higher genotypic and phenotypic diversity present

in microbial communities compared with single micro-
bial strains may mean that communities are more effi-
cient degraders of xenobiotic pollutants [193]. As such,
artificial consortia created by selecting a small number
of plastic degrading microorganisms within an already
existing consortium (i.e., using a top-down approach
[194]), or combining separately isolated microbial strains
(i.e., using a bottom-up approach [162]) may be a useful
strategy for improving plastic biodegradation. Alterna-
tively, directed mutagenesis to improve gene expression
and enzyme function, along with metabolic engineering
and synthetic biology tools, could be exploited to obtain
more efficient plastic-degrading consortia. Specifically,
the introduction or modification of interspecific micro-
bial interactions (such as intercellular communication
via metabolite exchange) could be used to create consor-
tia with improved biodegradation traits [195, 196]. Add-
itionally, the segmentation of metabolic pathways among
strains such that each organism produces an intermedi-
ate compound that can be used by the next organism in
the pathway can be used to reduce the metabolic burden

on any one organism. Because only limited information
is available regarding genes and enzymes involved in
plastic biodegradation [28], an improved understanding
of degradation pathways by single strains and multi-
strain co-degradation pathways is first required to facili-
tate this approach.

Conclusions
The impacts of global plastic pollution on microbiomes
are diverse, ranging from the direct consequences of
toxic leachates on microbial community health and ac-
tivity to the indirect effects of plastics on host organisms
and environments. Many hundreds of microbial species,
genes and enzymes are implicated in plastic degradation.
For a small number of particularly bio-based plastics,
such as PLA, clear evidence is presented for their micro-
bial degradation. However, for the majority of commer-
cial plastics, evidence for microbial degradation remains
weak, with studies failing to confirm microbial growth
on the synthetic polymer. To ensure the correct identifi-
cation of plastic-degrading taxa and enzymes, facilitating
their improvement by environmental, biotic and genetic
manipulation, multiple lines of evidence for plastic deg-
radation should be presented. Ideally this will include
evidence of changes in the polymer structure, mass loss
and detection of degradation products, along with con-
firmation of the microbial strain and putative plastic-
degrading enzymes and associated genes. Such details
are essential for organisms and enzymes capable of plas-
tic degradation to be reliably differentiated from those
only capable of degrading the more labile carbon within
predominantly amorphous plastics, plastic monomers,
fillers and additives.
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